Spaces:
Running
Running
import gradio as gr | |
import ipdb | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
ModelInfoColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_info_df, get_merged_df | |
from src.submission.submit import add_new_eval | |
from src.utils import norm_sNavie, pivot_df, get_grouped_dfs, pivot_existed_df, rename_metrics, format_df | |
# import ipdb | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
# ## Space initialisation | |
# try: | |
# print(EVAL_REQUESTS_PATH) | |
# snapshot_download( | |
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
# token=TOKEN | |
# ) | |
# except Exception: | |
# restart_space() | |
# try: | |
# print(EVAL_RESULTS_PATH) | |
# snapshot_download( | |
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
# token=TOKEN | |
# ) | |
# except Exception: | |
# restart_space() | |
# # LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
# df = pd.read_csv('LOTSAv2_EvalBenchmark(Long).csv') | |
# # Step 2: Pivot the DataFrame | |
# LEADERBOARD_DF = df.pivot_table(index='model', | |
# columns='dataset', | |
# values='eval_metrics/MAE[0.5]', | |
# aggfunc='first') | |
# LEADERBOARD_DF.drop(columns=['ALL'], inplace=True) | |
# | |
# # Reset the index if you want the model column to be part of the DataFrame | |
# LEADERBOARD_DF.reset_index(inplace=True) | |
# # Step 3: noramlize the values | |
# # ipdb.set_trace() | |
# LEADERBOARD_DF = norm_sNavie(LEADERBOARD_DF) | |
# | |
# # LEADERBOARD_DF['Average'] = LEADERBOARD_DF.mean(axis=1) | |
# # LEADERBOARD_DF.insert(1, 'Average', LEADERBOARD_DF.pop('Average')) | |
# # LEADERBOARD_DF = LEADERBOARD_DF.sort_values(by=['Average'], ascending=True) | |
# print(f"The leaderboard is {LEADERBOARD_DF}") | |
# print(f'Columns: ', LEADERBOARD_DF.columns) | |
# LEADERBOARD_DF = pd.read_csv('pivoted_df.csv') | |
# domain_df = pivot_df('results/grouped_results_by_domain.csv', tab_name='domain') | |
# print(f'Domain dataframe is {domain_df}') | |
# freq_df = pivot_df('results/grouped_results_by_frequency.csv', tab_name='frequency') | |
# print(f'Freq dataframe is {freq_df}') | |
# term_length_df = pivot_df('results/grouped_results_by_term_length.csv', tab_name='term_length') | |
# print(f'Term length dataframe is {term_length_df}') | |
# variate_type_df = pivot_df('results/grouped_results_by_univariate.csv', tab_name='univariate') | |
# print(f'Variate type dataframe is {variate_type_df}') | |
# model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH) | |
grouped_dfs = get_grouped_dfs() | |
domain_df, freq_df, term_length_df, variate_type_df, overall_df = grouped_dfs['domain'], grouped_dfs['frequency'], grouped_dfs['term_length'], grouped_dfs['univariate'], grouped_dfs['overall'] | |
overall_df = rename_metrics(overall_df) | |
overall_df = format_df(overall_df) | |
overall_df = overall_df.sort_values(by=['Rank']) | |
domain_df = pivot_existed_df(domain_df, tab_name='domain') | |
print(f'Domain dataframe is {domain_df}') | |
freq_df = pivot_existed_df(freq_df, tab_name='frequency') | |
print(f'Freq dataframe is {freq_df}') | |
term_length_df = pivot_existed_df(term_length_df, tab_name='term_length') | |
print(f'Term length dataframe is {term_length_df}') | |
variate_type_df = pivot_existed_df(variate_type_df, tab_name='univariate') | |
print(f'Variate type dataframe is {variate_type_df}') | |
model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH) | |
# ( | |
# finished_eval_queue_df, | |
# running_eval_queue_df, | |
# pending_eval_queue_df, | |
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(ori_dataframe, model_info_df, sort_val: str|None = None): | |
if ori_dataframe is None or ori_dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
model_info_col_list = [c.name for c in fields(ModelInfoColumn) if c.displayed_by_default if c.name not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']] | |
col2type_dict = {c.name: c.type for c in fields(ModelInfoColumn)} | |
default_selection_list = list(ori_dataframe.columns) + model_info_col_list | |
# print('default_selection_list: ', default_selection_list) | |
# ipdb.set_trace() | |
# default_selection_list = [col for col in default_selection_list if col not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']] | |
merged_df = get_merged_df(ori_dataframe, model_info_df) | |
new_cols = ['T'] + [col for col in merged_df.columns if col != 'T'] | |
merged_df = merged_df[new_cols] | |
if sort_val: | |
if sort_val in merged_df.columns: | |
merged_df = merged_df.sort_values(by=[sort_val]) | |
else: | |
print(f'Warning: cannot sort by {sort_val}') | |
print('Merged df: ', merged_df) | |
# get the data type | |
datatype_list = [col2type_dict[col] if col in col2type_dict else 'number' for col in merged_df.columns] | |
# print('datatype_list: ', datatype_list) | |
# print('merged_df.column: ', merged_df.columns) | |
# ipdb.set_trace() | |
return Leaderboard( | |
value=merged_df, | |
datatype=datatype_list, | |
select_columns=SelectColumns( | |
default_selection=default_selection_list, | |
# default_selection=[c.name for c in fields(ModelInfoColumn) if | |
# c.displayed_by_default and c.name not in ['params', 'available_on_hub', 'hub', | |
# 'Model sha', 'Hub License']], | |
# default_selection=list(dataframe.columns), | |
cant_deselect=[c.name for c in fields(ModelInfoColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
# How to uncheck?? | |
), | |
hide_columns=[c.name for c in fields(ModelInfoColumn) if c.hidden], | |
search_columns=['model'], | |
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
# filter_columns=[ | |
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
# ColumnFilter( | |
# AutoEvalColumn.params.name, | |
# type="slider", | |
# min=0.01, | |
# max=500, | |
# label="Select the number of parameters (B)", | |
# ), | |
# ColumnFilter( | |
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False | |
# ), | |
# ], | |
filter_columns=[ | |
ColumnFilter(ModelInfoColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
], | |
# bool_checkboxgroup_label="", | |
column_widths=[40, 150] + [180 for _ in range(len(merged_df.columns)-2)], | |
interactive=False, | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem('π Overall', elem_id="llm-benchmark-tab-table", id=5): | |
leaderboard = init_leaderboard(overall_df, model_info_df, sort_val='Rank') | |
print(f'FINAL Overall LEADERBOARD {overall_df}') | |
with gr.TabItem("π By Domain", elem_id="llm-benchmark-tab-table", id=0): | |
leaderboard = init_leaderboard(domain_df, model_info_df) | |
print(f"FINAL Domain LEADERBOARD 1 {domain_df}") | |
with gr.TabItem("π By Frequency", elem_id="llm-benchmark-tab-table", id=1): | |
leaderboard = init_leaderboard(freq_df, model_info_df) | |
print(f"FINAL Frequency LEADERBOARD 1 {freq_df}") | |
with gr.TabItem("π By Term Length", elem_id="llm-benchmark-tab-table", id=2): | |
leaderboard = init_leaderboard(term_length_df, model_info_df) | |
print(f"FINAL term length LEADERBOARD 1 {term_length_df}") | |
with gr.TabItem("π By Variate Type", elem_id="llm-benchmark-tab-table", id=3): | |
leaderboard = init_leaderboard(variate_type_df, model_info_df) | |
print(f"FINAL LEADERBOARD 1 {variate_type_df}") | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
# scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |