Spaces:
Runtime error
Runtime error
Dongxu Li
commited on
Commit
·
f7f5be8
1
Parent(s):
8f68280
fix missing rep_penalty.
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ from io import BytesIO
|
|
3 |
import string
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
-
from PIL import Image
|
7 |
from utils import Endpoint
|
8 |
|
9 |
|
@@ -15,7 +14,10 @@ def encode_image(image):
|
|
15 |
return buffered
|
16 |
|
17 |
|
18 |
-
def query_api(
|
|
|
|
|
|
|
19 |
url = endpoint.url
|
20 |
|
21 |
headers = {"User-Agent": "BLIP-2 HuggingFace Space"}
|
@@ -60,8 +62,11 @@ def inference(
|
|
60 |
history.append(text_input)
|
61 |
|
62 |
prompt = " ".join(history)
|
|
|
63 |
|
64 |
-
output = query_api(
|
|
|
|
|
65 |
output = postprocess_output(output)
|
66 |
history += output
|
67 |
|
@@ -69,37 +74,23 @@ def inference(
|
|
69 |
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
|
70 |
] # convert to tuples of list
|
71 |
|
72 |
-
return chat, history
|
73 |
-
|
74 |
-
|
75 |
-
# image source: https://m.facebook.com/112483753737319/photos/112489593736735/
|
76 |
-
endpoint = Endpoint()
|
77 |
-
|
78 |
-
examples = [
|
79 |
-
["house.png", "How could someone get out of the house?"],
|
80 |
-
[
|
81 |
-
"sunset.png",
|
82 |
-
"Write a romantic message that goes along this photo.",
|
83 |
-
],
|
84 |
-
]
|
85 |
|
86 |
-
# outputs = ["chatbot", "state"]
|
87 |
|
88 |
title = """<h1 align="center">BLIP-2</h1>"""
|
89 |
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
|
90 |
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
|
91 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>"
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
def reset_all(text_input, image_input, chatbot, history):
|
97 |
-
return "", None, None, []
|
98 |
-
|
99 |
-
|
100 |
-
def reset_chatbot(chatbot, history):
|
101 |
-
return None, []
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
with gr.Blocks() as iface:
|
105 |
state = gr.State([])
|
@@ -139,25 +130,30 @@ with gr.Blocks() as iface:
|
|
139 |
|
140 |
rep_penalty = gr.Slider(
|
141 |
minimum=1.0,
|
142 |
-
maximum=
|
143 |
-
value=
|
144 |
step=0.5,
|
145 |
interactive=True,
|
146 |
label="Repetition Penalty",
|
147 |
)
|
148 |
|
149 |
with gr.Column():
|
150 |
-
|
|
|
|
|
151 |
|
152 |
with gr.Row():
|
|
|
153 |
clear_button = gr.Button(value="Clear", interactive=True)
|
154 |
clear_button.click(
|
155 |
-
|
156 |
-
[
|
157 |
[text_input, image_input, chatbot, state],
|
158 |
)
|
159 |
|
160 |
-
submit_button = gr.Button(
|
|
|
|
|
161 |
submit_button.click(
|
162 |
inference,
|
163 |
[
|
@@ -166,17 +162,16 @@ with gr.Blocks() as iface:
|
|
166 |
sampling,
|
167 |
temperature,
|
168 |
len_penalty,
|
|
|
169 |
state,
|
170 |
],
|
171 |
[chatbot, state],
|
172 |
)
|
173 |
|
174 |
-
image_input.change(reset_chatbot, [chatbot, state], [chatbot, state])
|
175 |
-
|
176 |
examples = gr.Examples(
|
177 |
examples=examples,
|
178 |
inputs=[image_input, text_input],
|
179 |
)
|
180 |
|
181 |
-
iface.queue(concurrency_count=1)
|
182 |
-
iface.launch(enable_queue=True
|
|
|
3 |
import string
|
4 |
import gradio as gr
|
5 |
import requests
|
|
|
6 |
from utils import Endpoint
|
7 |
|
8 |
|
|
|
14 |
return buffered
|
15 |
|
16 |
|
17 |
+
def query_api(
|
18 |
+
image, prompt, decoding_method, temperature, len_penalty, repetition_penalty
|
19 |
+
):
|
20 |
+
|
21 |
url = endpoint.url
|
22 |
|
23 |
headers = {"User-Agent": "BLIP-2 HuggingFace Space"}
|
|
|
62 |
history.append(text_input)
|
63 |
|
64 |
prompt = " ".join(history)
|
65 |
+
print(prompt)
|
66 |
|
67 |
+
output = query_api(
|
68 |
+
image, prompt, decoding_method, temperature, length_penalty, repetition_penalty
|
69 |
+
)
|
70 |
output = postprocess_output(output)
|
71 |
history += output
|
72 |
|
|
|
74 |
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
|
75 |
] # convert to tuples of list
|
76 |
|
77 |
+
return {chatbot: chat, state: history}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
79 |
|
80 |
title = """<h1 align="center">BLIP-2</h1>"""
|
81 |
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
|
82 |
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
|
83 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>"
|
84 |
|
85 |
+
endpoint = Endpoint()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
examples = [
|
88 |
+
["house.png", "How could someone get out of the house?"],
|
89 |
+
# [
|
90 |
+
# "sunset.png",
|
91 |
+
# "Write a romantic message that goes along this photo.",
|
92 |
+
# ],
|
93 |
+
]
|
94 |
|
95 |
with gr.Blocks() as iface:
|
96 |
state = gr.State([])
|
|
|
130 |
|
131 |
rep_penalty = gr.Slider(
|
132 |
minimum=1.0,
|
133 |
+
maximum=20.0,
|
134 |
+
value=10.0,
|
135 |
step=0.5,
|
136 |
interactive=True,
|
137 |
label="Repetition Penalty",
|
138 |
)
|
139 |
|
140 |
with gr.Column():
|
141 |
+
with gr.Row():
|
142 |
+
chatbot = gr.Chatbot()
|
143 |
+
image_input.change(lambda: (None, []), [], [chatbot, state])
|
144 |
|
145 |
with gr.Row():
|
146 |
+
|
147 |
clear_button = gr.Button(value="Clear", interactive=True)
|
148 |
clear_button.click(
|
149 |
+
lambda: ("", None, [], []),
|
150 |
+
[],
|
151 |
[text_input, image_input, chatbot, state],
|
152 |
)
|
153 |
|
154 |
+
submit_button = gr.Button(
|
155 |
+
value="Submit", interactive=True, variant="primary"
|
156 |
+
)
|
157 |
submit_button.click(
|
158 |
inference,
|
159 |
[
|
|
|
162 |
sampling,
|
163 |
temperature,
|
164 |
len_penalty,
|
165 |
+
rep_penalty,
|
166 |
state,
|
167 |
],
|
168 |
[chatbot, state],
|
169 |
)
|
170 |
|
|
|
|
|
171 |
examples = gr.Examples(
|
172 |
examples=examples,
|
173 |
inputs=[image_input, text_input],
|
174 |
)
|
175 |
|
176 |
+
iface.queue(concurrency_count=1, api_open=False, max_size=20)
|
177 |
+
iface.launch(enable_queue=True)
|