import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 8096 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Uncensored Llama-3.2-3B-Instruct Chat This is an uncensored version of the original [Llama-3.2-3B-Instruct](https://huggingface.co./meta-llama/Llama-3.2-3B-Instruct), created using [mlabonne](https://huggingface.co./mlabonne)'s [script](https://colab.research.google.com/drive/1VYm3hOcvCpbGiqKZb141gJwjdmmCcVpR?usp=sharing), which builds on [FailSpy's notebook](https://huggingface.co./failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb) and the original work from [Andy Arditi et al.](https://colab.research.google.com/drive/1a-aQvKC9avdZpdyBn4jgRQFObTPy1JZw?usp=sharing). The method is discussed in details in this [blog](https://huggingface.co./blog/mlabonne/abliteration) and this [paper](https://arxiv.org/abs/2406.11717). You can found the uncensored model [here](https://huggingface.co./chuanli11/Llama-3.2-3B-Instruct-uncensored). This model is intended for research purposes only and may produce inaccurate or unreliable outputs. Use it cautiously and at your own risk. 🦄 Other exciting ML projects at Lambda: [ML Times](https://news.lambdalabs.com/news/today), [Distributed Training Guide](https://github.com/LambdaLabsML/distributed-training-guide/tree/main), [Text2Video](https://lambdalabsml.github.io/Open-Sora/introduction/), [GPU Benchmark](https://lambdalabs.com/gpu-benchmarks). """ LICENSE = """
--- As a derivate work of [Llama-3.2-3B-Instruct](https://huggingface.co./meta-llama/Llama-3.2-3B-Instruct) by Meta, this demo is governed by the original [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE). """ if torch.cuda.is_available() or os.getenv("ZERO_GPU_SUPPORT", False): model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) else: model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored" model = AutoModelForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, num_beams=1, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), ], stop_btn=None, examples=[ ["Instruct on how to commit insider trading in the stock market"], ], cache_examples=False, ) with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()