|
import logging |
|
import os |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.nn import Module |
|
from torch.nn.functional import normalize, linear |
|
from torch.nn.parameter import Parameter |
|
|
|
|
|
class PartialFC(Module): |
|
""" |
|
Author: {Xiang An, Yang Xiao, XuHan Zhu} in DeepGlint, |
|
Partial FC: Training 10 Million Identities on a Single Machine |
|
See the original paper: |
|
https://arxiv.org/abs/2010.05222 |
|
""" |
|
|
|
@torch.no_grad() |
|
def __init__(self, rank, local_rank, world_size, batch_size, resume, |
|
margin_softmax, num_classes, sample_rate=1.0, embedding_size=512, prefix="./"): |
|
""" |
|
rank: int |
|
Unique process(GPU) ID from 0 to world_size - 1. |
|
local_rank: int |
|
Unique process(GPU) ID within the server from 0 to 7. |
|
world_size: int |
|
Number of GPU. |
|
batch_size: int |
|
Batch size on current rank(GPU). |
|
resume: bool |
|
Select whether to restore the weight of softmax. |
|
margin_softmax: callable |
|
A function of margin softmax, eg: cosface, arcface. |
|
num_classes: int |
|
The number of class center storage in current rank(CPU/GPU), usually is total_classes // world_size, |
|
required. |
|
sample_rate: float |
|
The partial fc sampling rate, when the number of classes increases to more than 2 millions, Sampling |
|
can greatly speed up training, and reduce a lot of GPU memory, default is 1.0. |
|
embedding_size: int |
|
The feature dimension, default is 512. |
|
prefix: str |
|
Path for save checkpoint, default is './'. |
|
""" |
|
super(PartialFC, self).__init__() |
|
|
|
self.num_classes: int = num_classes |
|
self.rank: int = rank |
|
self.local_rank: int = local_rank |
|
self.device: torch.device = torch.device("cuda:{}".format(self.local_rank)) |
|
self.world_size: int = world_size |
|
self.batch_size: int = batch_size |
|
self.margin_softmax: callable = margin_softmax |
|
self.sample_rate: float = sample_rate |
|
self.embedding_size: int = embedding_size |
|
self.prefix: str = prefix |
|
self.num_local: int = num_classes // world_size + int(rank < num_classes % world_size) |
|
self.class_start: int = num_classes // world_size * rank + min(rank, num_classes % world_size) |
|
self.num_sample: int = int(self.sample_rate * self.num_local) |
|
|
|
self.weight_name = os.path.join(self.prefix, "rank_{}_softmax_weight.pt".format(self.rank)) |
|
self.weight_mom_name = os.path.join(self.prefix, "rank_{}_softmax_weight_mom.pt".format(self.rank)) |
|
|
|
if resume: |
|
try: |
|
self.weight: torch.Tensor = torch.load(self.weight_name) |
|
self.weight_mom: torch.Tensor = torch.load(self.weight_mom_name) |
|
if self.weight.shape[0] != self.num_local or self.weight_mom.shape[0] != self.num_local: |
|
raise IndexError |
|
logging.info("softmax weight resume successfully!") |
|
logging.info("softmax weight mom resume successfully!") |
|
except (FileNotFoundError, KeyError, IndexError): |
|
self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device) |
|
self.weight_mom: torch.Tensor = torch.zeros_like(self.weight) |
|
logging.info("softmax weight init!") |
|
logging.info("softmax weight mom init!") |
|
else: |
|
self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device) |
|
self.weight_mom: torch.Tensor = torch.zeros_like(self.weight) |
|
logging.info("softmax weight init successfully!") |
|
logging.info("softmax weight mom init successfully!") |
|
self.stream: torch.cuda.Stream = torch.cuda.Stream(local_rank) |
|
|
|
self.index = None |
|
if int(self.sample_rate) == 1: |
|
self.update = lambda: 0 |
|
self.sub_weight = Parameter(self.weight) |
|
self.sub_weight_mom = self.weight_mom |
|
else: |
|
self.sub_weight = Parameter(torch.empty((0, 0)).cuda(local_rank)) |
|
|
|
def save_params(self): |
|
""" Save softmax weight for each rank on prefix |
|
""" |
|
torch.save(self.weight.data, self.weight_name) |
|
torch.save(self.weight_mom, self.weight_mom_name) |
|
|
|
@torch.no_grad() |
|
def sample(self, total_label): |
|
""" |
|
Sample all positive class centers in each rank, and random select neg class centers to filling a fixed |
|
`num_sample`. |
|
|
|
total_label: tensor |
|
Label after all gather, which cross all GPUs. |
|
""" |
|
index_positive = (self.class_start <= total_label) & (total_label < self.class_start + self.num_local) |
|
total_label[~index_positive] = -1 |
|
total_label[index_positive] -= self.class_start |
|
if int(self.sample_rate) != 1: |
|
positive = torch.unique(total_label[index_positive], sorted=True) |
|
if self.num_sample - positive.size(0) >= 0: |
|
perm = torch.rand(size=[self.num_local], device=self.device) |
|
perm[positive] = 2.0 |
|
index = torch.topk(perm, k=self.num_sample)[1] |
|
index = index.sort()[0] |
|
else: |
|
index = positive |
|
self.index = index |
|
total_label[index_positive] = torch.searchsorted(index, total_label[index_positive]) |
|
self.sub_weight = Parameter(self.weight[index]) |
|
self.sub_weight_mom = self.weight_mom[index] |
|
|
|
def forward(self, total_features, norm_weight): |
|
""" Partial fc forward, `logits = X * sample(W)` |
|
""" |
|
torch.cuda.current_stream().wait_stream(self.stream) |
|
logits = linear(total_features, norm_weight) |
|
return logits |
|
|
|
@torch.no_grad() |
|
def update(self): |
|
""" Set updated weight and weight_mom to memory bank. |
|
""" |
|
self.weight_mom[self.index] = self.sub_weight_mom |
|
self.weight[self.index] = self.sub_weight |
|
|
|
def prepare(self, label, optimizer): |
|
""" |
|
get sampled class centers for cal softmax. |
|
|
|
label: tensor |
|
Label tensor on each rank. |
|
optimizer: opt |
|
Optimizer for partial fc, which need to get weight mom. |
|
""" |
|
with torch.cuda.stream(self.stream): |
|
total_label = torch.zeros( |
|
size=[self.batch_size * self.world_size], device=self.device, dtype=torch.long) |
|
dist.all_gather(list(total_label.chunk(self.world_size, dim=0)), label) |
|
self.sample(total_label) |
|
optimizer.state.pop(optimizer.param_groups[-1]['params'][0], None) |
|
optimizer.param_groups[-1]['params'][0] = self.sub_weight |
|
optimizer.state[self.sub_weight]['momentum_buffer'] = self.sub_weight_mom |
|
norm_weight = normalize(self.sub_weight) |
|
return total_label, norm_weight |
|
|
|
def forward_backward(self, label, features, optimizer): |
|
""" |
|
Partial fc forward and backward with model parallel |
|
|
|
label: tensor |
|
Label tensor on each rank(GPU) |
|
features: tensor |
|
Features tensor on each rank(GPU) |
|
optimizer: optimizer |
|
Optimizer for partial fc |
|
|
|
Returns: |
|
-------- |
|
x_grad: tensor |
|
The gradient of features. |
|
loss_v: tensor |
|
Loss value for cross entropy. |
|
""" |
|
total_label, norm_weight = self.prepare(label, optimizer) |
|
total_features = torch.zeros( |
|
size=[self.batch_size * self.world_size, self.embedding_size], device=self.device) |
|
dist.all_gather(list(total_features.chunk(self.world_size, dim=0)), features.data) |
|
total_features.requires_grad = True |
|
|
|
logits = self.forward(total_features, norm_weight) |
|
logits = self.margin_softmax(logits, total_label) |
|
|
|
with torch.no_grad(): |
|
max_fc = torch.max(logits, dim=1, keepdim=True)[0] |
|
dist.all_reduce(max_fc, dist.ReduceOp.MAX) |
|
|
|
|
|
logits_exp = torch.exp(logits - max_fc) |
|
logits_sum_exp = logits_exp.sum(dim=1, keepdims=True) |
|
dist.all_reduce(logits_sum_exp, dist.ReduceOp.SUM) |
|
|
|
|
|
logits_exp.div_(logits_sum_exp) |
|
|
|
|
|
grad = logits_exp |
|
index = torch.where(total_label != -1)[0] |
|
one_hot = torch.zeros(size=[index.size()[0], grad.size()[1]], device=grad.device) |
|
one_hot.scatter_(1, total_label[index, None], 1) |
|
|
|
|
|
loss = torch.zeros(grad.size()[0], 1, device=grad.device) |
|
loss[index] = grad[index].gather(1, total_label[index, None]) |
|
dist.all_reduce(loss, dist.ReduceOp.SUM) |
|
loss_v = loss.clamp_min_(1e-30).log_().mean() * (-1) |
|
|
|
|
|
grad[index] -= one_hot |
|
grad.div_(self.batch_size * self.world_size) |
|
|
|
logits.backward(grad) |
|
if total_features.grad is not None: |
|
total_features.grad.detach_() |
|
x_grad: torch.Tensor = torch.zeros_like(features, requires_grad=True) |
|
|
|
dist.reduce_scatter(x_grad, list(total_features.grad.chunk(self.world_size, dim=0))) |
|
x_grad = x_grad * self.world_size |
|
|
|
return x_grad, loss_v |
|
|