|
from __future__ import division |
|
import datetime |
|
import os |
|
import os.path as osp |
|
import glob |
|
import numpy as np |
|
import cv2 |
|
import sys |
|
import onnxruntime |
|
import onnx |
|
import argparse |
|
from onnx import numpy_helper |
|
from insightface.data import get_image |
|
|
|
class ArcFaceORT: |
|
def __init__(self, model_path, cpu=False): |
|
self.model_path = model_path |
|
|
|
self.providers = ['CPUExecutionProvider'] if cpu else None |
|
|
|
|
|
def check(self, track='cfat', test_img = None): |
|
|
|
max_model_size_mb=1024 |
|
max_feat_dim=512 |
|
max_time_cost=15 |
|
if track.startswith('ms1m'): |
|
max_model_size_mb=1024 |
|
max_feat_dim=512 |
|
max_time_cost=10 |
|
elif track.startswith('glint'): |
|
max_model_size_mb=1024 |
|
max_feat_dim=1024 |
|
max_time_cost=20 |
|
elif track.startswith('cfat'): |
|
max_model_size_mb = 1024 |
|
max_feat_dim = 512 |
|
max_time_cost = 15 |
|
elif track.startswith('unconstrained'): |
|
max_model_size_mb=1024 |
|
max_feat_dim=1024 |
|
max_time_cost=30 |
|
else: |
|
return "track not found" |
|
|
|
if not os.path.exists(self.model_path): |
|
return "model_path not exists" |
|
if not os.path.isdir(self.model_path): |
|
return "model_path should be directory" |
|
onnx_files = [] |
|
for _file in os.listdir(self.model_path): |
|
if _file.endswith('.onnx'): |
|
onnx_files.append(osp.join(self.model_path, _file)) |
|
if len(onnx_files)==0: |
|
return "do not have onnx files" |
|
self.model_file = sorted(onnx_files)[-1] |
|
print('use onnx-model:', self.model_file) |
|
try: |
|
session = onnxruntime.InferenceSession(self.model_file, providers=self.providers) |
|
except: |
|
return "load onnx failed" |
|
input_cfg = session.get_inputs()[0] |
|
input_shape = input_cfg.shape |
|
print('input-shape:', input_shape) |
|
if len(input_shape)!=4: |
|
return "length of input_shape should be 4" |
|
if not isinstance(input_shape[0], str): |
|
|
|
print('reset input-shape[0] to None') |
|
model = onnx.load(self.model_file) |
|
model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None' |
|
new_model_file = osp.join(self.model_path, 'zzzzrefined.onnx') |
|
onnx.save(model, new_model_file) |
|
self.model_file = new_model_file |
|
print('use new onnx-model:', self.model_file) |
|
try: |
|
session = onnxruntime.InferenceSession(self.model_file, providers=self.providers) |
|
except: |
|
return "load onnx failed" |
|
input_cfg = session.get_inputs()[0] |
|
input_shape = input_cfg.shape |
|
print('new-input-shape:', input_shape) |
|
|
|
self.image_size = tuple(input_shape[2:4][::-1]) |
|
|
|
input_name = input_cfg.name |
|
outputs = session.get_outputs() |
|
output_names = [] |
|
for o in outputs: |
|
output_names.append(o.name) |
|
|
|
if len(output_names)!=1: |
|
return "number of output nodes should be 1" |
|
self.session = session |
|
self.input_name = input_name |
|
self.output_names = output_names |
|
|
|
model = onnx.load(self.model_file) |
|
graph = model.graph |
|
if len(graph.node)<8: |
|
return "too small onnx graph" |
|
|
|
input_size = (112,112) |
|
self.crop = None |
|
if track=='cfat': |
|
crop_file = osp.join(self.model_path, 'crop.txt') |
|
if osp.exists(crop_file): |
|
lines = open(crop_file,'r').readlines() |
|
if len(lines)!=6: |
|
return "crop.txt should contain 6 lines" |
|
lines = [int(x) for x in lines] |
|
self.crop = lines[:4] |
|
input_size = tuple(lines[4:6]) |
|
if input_size!=self.image_size: |
|
return "input-size is inconsistant with onnx model input, %s vs %s"%(input_size, self.image_size) |
|
|
|
self.model_size_mb = os.path.getsize(self.model_file) / float(1024*1024) |
|
if self.model_size_mb > max_model_size_mb: |
|
return "max model size exceed, given %.3f-MB"%self.model_size_mb |
|
|
|
input_mean = None |
|
input_std = None |
|
if track=='cfat': |
|
pn_file = osp.join(self.model_path, 'pixel_norm.txt') |
|
if osp.exists(pn_file): |
|
lines = open(pn_file,'r').readlines() |
|
if len(lines)!=2: |
|
return "pixel_norm.txt should contain 2 lines" |
|
input_mean = float(lines[0]) |
|
input_std = float(lines[1]) |
|
if input_mean is not None or input_std is not None: |
|
if input_mean is None or input_std is None: |
|
return "please set input_mean and input_std simultaneously" |
|
else: |
|
find_sub = False |
|
find_mul = False |
|
for nid, node in enumerate(graph.node[:8]): |
|
print(nid, node.name) |
|
if node.name.startswith('Sub') or node.name.startswith('_minus'): |
|
find_sub = True |
|
if node.name.startswith('Mul') or node.name.startswith('_mul') or node.name.startswith('Div'): |
|
find_mul = True |
|
if find_sub and find_mul: |
|
print("find sub and mul") |
|
|
|
input_mean = 0.0 |
|
input_std = 1.0 |
|
else: |
|
input_mean = 127.5 |
|
input_std = 127.5 |
|
self.input_mean = input_mean |
|
self.input_std = input_std |
|
for initn in graph.initializer: |
|
weight_array = numpy_helper.to_array(initn) |
|
dt = weight_array.dtype |
|
if dt.itemsize<4: |
|
return 'invalid weight type - (%s:%s)' % (initn.name, dt.name) |
|
if test_img is None: |
|
test_img = get_image('Tom_Hanks_54745') |
|
test_img = cv2.resize(test_img, self.image_size) |
|
else: |
|
test_img = cv2.resize(test_img, self.image_size) |
|
feat, cost = self.benchmark(test_img) |
|
batch_result = self.check_batch(test_img) |
|
batch_result_sum = float(np.sum(batch_result)) |
|
if batch_result_sum in [float('inf'), -float('inf')] or batch_result_sum != batch_result_sum: |
|
print(batch_result) |
|
print(batch_result_sum) |
|
return "batch result output contains NaN!" |
|
|
|
if len(feat.shape) < 2: |
|
return "the shape of the feature must be two, but get {}".format(str(feat.shape)) |
|
|
|
if feat.shape[1] > max_feat_dim: |
|
return "max feat dim exceed, given %d"%feat.shape[1] |
|
self.feat_dim = feat.shape[1] |
|
cost_ms = cost*1000 |
|
if cost_ms>max_time_cost: |
|
return "max time cost exceed, given %.4f"%cost_ms |
|
self.cost_ms = cost_ms |
|
print('check stat:, model-size-mb: %.4f, feat-dim: %d, time-cost-ms: %.4f, input-mean: %.3f, input-std: %.3f'%(self.model_size_mb, self.feat_dim, self.cost_ms, self.input_mean, self.input_std)) |
|
return None |
|
|
|
def check_batch(self, img): |
|
if not isinstance(img, list): |
|
imgs = [img, ] * 32 |
|
if self.crop is not None: |
|
nimgs = [] |
|
for img in imgs: |
|
nimg = img[self.crop[1]:self.crop[3], self.crop[0]:self.crop[2], :] |
|
if nimg.shape[0] != self.image_size[1] or nimg.shape[1] != self.image_size[0]: |
|
nimg = cv2.resize(nimg, self.image_size) |
|
nimgs.append(nimg) |
|
imgs = nimgs |
|
blob = cv2.dnn.blobFromImages( |
|
images=imgs, scalefactor=1.0 / self.input_std, size=self.image_size, |
|
mean=(self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
net_out = self.session.run(self.output_names, {self.input_name: blob})[0] |
|
return net_out |
|
|
|
|
|
def meta_info(self): |
|
return {'model-size-mb':self.model_size_mb, 'feature-dim':self.feat_dim, 'infer': self.cost_ms} |
|
|
|
|
|
def forward(self, imgs): |
|
if not isinstance(imgs, list): |
|
imgs = [imgs] |
|
input_size = self.image_size |
|
if self.crop is not None: |
|
nimgs = [] |
|
for img in imgs: |
|
nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:] |
|
if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]: |
|
nimg = cv2.resize(nimg, input_size) |
|
nimgs.append(nimg) |
|
imgs = nimgs |
|
blob = cv2.dnn.blobFromImages(imgs, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
net_out = self.session.run(self.output_names, {self.input_name : blob})[0] |
|
return net_out |
|
|
|
def benchmark(self, img): |
|
input_size = self.image_size |
|
if self.crop is not None: |
|
nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:] |
|
if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]: |
|
nimg = cv2.resize(nimg, input_size) |
|
img = nimg |
|
blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
costs = [] |
|
for _ in range(50): |
|
ta = datetime.datetime.now() |
|
net_out = self.session.run(self.output_names, {self.input_name : blob})[0] |
|
tb = datetime.datetime.now() |
|
cost = (tb-ta).total_seconds() |
|
costs.append(cost) |
|
costs = sorted(costs) |
|
cost = costs[5] |
|
return net_out, cost |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='') |
|
|
|
parser.add_argument('workdir', help='submitted work dir', type=str) |
|
parser.add_argument('--track', help='track name, for different challenge', type=str, default='cfat') |
|
args = parser.parse_args() |
|
handler = ArcFaceORT(args.workdir) |
|
err = handler.check(args.track) |
|
print('err:', err) |
|
|