|
import argparse |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from backbones import get_model |
|
|
|
|
|
@torch.no_grad() |
|
def inference(weight, name, img): |
|
if img is None: |
|
img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.uint8) |
|
else: |
|
img = cv2.imread(img) |
|
img = cv2.resize(img, (112, 112)) |
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = np.transpose(img, (2, 0, 1)) |
|
img = torch.from_numpy(img).unsqueeze(0).float() |
|
img.div_(255).sub_(0.5).div_(0.5) |
|
net = get_model(name, fp16=False) |
|
net.load_state_dict(torch.load(weight)) |
|
net.eval() |
|
feat = net(img).numpy() |
|
print(feat) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='PyTorch ArcFace Training') |
|
parser.add_argument('--network', type=str, default='r50', help='backbone network') |
|
parser.add_argument('--weight', type=str, default='') |
|
parser.add_argument('--img', type=str, default=None) |
|
args = parser.parse_args() |
|
inference(args.weight, args.network, args.img) |
|
|