|
|
|
|
|
import os |
|
import pickle |
|
|
|
import matplotlib |
|
import pandas as pd |
|
|
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
import timeit |
|
import sklearn |
|
import argparse |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from skimage import transform as trans |
|
from backbones import get_model |
|
from sklearn.metrics import roc_curve, auc |
|
|
|
from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap |
|
from prettytable import PrettyTable |
|
from pathlib import Path |
|
|
|
import sys |
|
import warnings |
|
|
|
sys.path.insert(0, "../") |
|
warnings.filterwarnings("ignore") |
|
|
|
parser = argparse.ArgumentParser(description='do ijb test') |
|
|
|
parser.add_argument('--model-prefix', default='', help='path to load model.') |
|
parser.add_argument('--image-path', default='', type=str, help='') |
|
parser.add_argument('--result-dir', default='.', type=str, help='') |
|
parser.add_argument('--batch-size', default=128, type=int, help='') |
|
parser.add_argument('--network', default='iresnet50', type=str, help='') |
|
parser.add_argument('--job', default='insightface', type=str, help='job name') |
|
parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB') |
|
args = parser.parse_args() |
|
|
|
target = args.target |
|
model_path = args.model_prefix |
|
image_path = args.image_path |
|
result_dir = args.result_dir |
|
gpu_id = None |
|
use_norm_score = True |
|
use_detector_score = True |
|
use_flip_test = True |
|
job = args.job |
|
batch_size = args.batch_size |
|
|
|
|
|
class Embedding(object): |
|
def __init__(self, prefix, data_shape, batch_size=1): |
|
image_size = (112, 112) |
|
self.image_size = image_size |
|
weight = torch.load(prefix) |
|
resnet = get_model(args.network, dropout=0, fp16=False).cuda() |
|
resnet.load_state_dict(weight) |
|
model = torch.nn.DataParallel(resnet) |
|
self.model = model |
|
self.model.eval() |
|
src = np.array([ |
|
[30.2946, 51.6963], |
|
[65.5318, 51.5014], |
|
[48.0252, 71.7366], |
|
[33.5493, 92.3655], |
|
[62.7299, 92.2041]], dtype=np.float32) |
|
src[:, 0] += 8.0 |
|
self.src = src |
|
self.batch_size = batch_size |
|
self.data_shape = data_shape |
|
|
|
def get(self, rimg, landmark): |
|
|
|
assert landmark.shape[0] == 68 or landmark.shape[0] == 5 |
|
assert landmark.shape[1] == 2 |
|
if landmark.shape[0] == 68: |
|
landmark5 = np.zeros((5, 2), dtype=np.float32) |
|
landmark5[0] = (landmark[36] + landmark[39]) / 2 |
|
landmark5[1] = (landmark[42] + landmark[45]) / 2 |
|
landmark5[2] = landmark[30] |
|
landmark5[3] = landmark[48] |
|
landmark5[4] = landmark[54] |
|
else: |
|
landmark5 = landmark |
|
tform = trans.SimilarityTransform() |
|
tform.estimate(landmark5, self.src) |
|
M = tform.params[0:2, :] |
|
img = cv2.warpAffine(rimg, |
|
M, (self.image_size[1], self.image_size[0]), |
|
borderValue=0.0) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img_flip = np.fliplr(img) |
|
img = np.transpose(img, (2, 0, 1)) |
|
img_flip = np.transpose(img_flip, (2, 0, 1)) |
|
input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8) |
|
input_blob[0] = img |
|
input_blob[1] = img_flip |
|
return input_blob |
|
|
|
@torch.no_grad() |
|
def forward_db(self, batch_data): |
|
imgs = torch.Tensor(batch_data).cuda() |
|
imgs.div_(255).sub_(0.5).div_(0.5) |
|
feat = self.model(imgs) |
|
feat = feat.reshape([self.batch_size, 2 * feat.shape[1]]) |
|
return feat.cpu().numpy() |
|
|
|
|
|
|
|
def divideIntoNstrand(listTemp, n): |
|
twoList = [[] for i in range(n)] |
|
for i, e in enumerate(listTemp): |
|
twoList[i % n].append(e) |
|
return twoList |
|
|
|
|
|
def read_template_media_list(path): |
|
|
|
ijb_meta = pd.read_csv(path, sep=' ', header=None).values |
|
templates = ijb_meta[:, 1].astype(np.int) |
|
medias = ijb_meta[:, 2].astype(np.int) |
|
return templates, medias |
|
|
|
|
|
|
|
|
|
|
|
def read_template_pair_list(path): |
|
|
|
pairs = pd.read_csv(path, sep=' ', header=None).values |
|
|
|
|
|
t1 = pairs[:, 0].astype(np.int) |
|
t2 = pairs[:, 1].astype(np.int) |
|
label = pairs[:, 2].astype(np.int) |
|
return t1, t2, label |
|
|
|
|
|
|
|
|
|
|
|
def read_image_feature(path): |
|
with open(path, 'rb') as fid: |
|
img_feats = pickle.load(fid) |
|
return img_feats |
|
|
|
|
|
|
|
|
|
|
|
def get_image_feature(img_path, files_list, model_path, epoch, gpu_id): |
|
batch_size = args.batch_size |
|
data_shape = (3, 112, 112) |
|
|
|
files = files_list |
|
print('files:', len(files)) |
|
rare_size = len(files) % batch_size |
|
faceness_scores = [] |
|
batch = 0 |
|
img_feats = np.empty((len(files), 1024), dtype=np.float32) |
|
|
|
batch_data = np.empty((2 * batch_size, 3, 112, 112)) |
|
embedding = Embedding(model_path, data_shape, batch_size) |
|
for img_index, each_line in enumerate(files[:len(files) - rare_size]): |
|
name_lmk_score = each_line.strip().split(' ') |
|
img_name = os.path.join(img_path, name_lmk_score[0]) |
|
img = cv2.imread(img_name) |
|
lmk = np.array([float(x) for x in name_lmk_score[1:-1]], |
|
dtype=np.float32) |
|
lmk = lmk.reshape((5, 2)) |
|
input_blob = embedding.get(img, lmk) |
|
|
|
batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0] |
|
batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1] |
|
if (img_index + 1) % batch_size == 0: |
|
print('batch', batch) |
|
img_feats[batch * batch_size:batch * batch_size + |
|
batch_size][:] = embedding.forward_db(batch_data) |
|
batch += 1 |
|
faceness_scores.append(name_lmk_score[-1]) |
|
|
|
batch_data = np.empty((2 * rare_size, 3, 112, 112)) |
|
embedding = Embedding(model_path, data_shape, rare_size) |
|
for img_index, each_line in enumerate(files[len(files) - rare_size:]): |
|
name_lmk_score = each_line.strip().split(' ') |
|
img_name = os.path.join(img_path, name_lmk_score[0]) |
|
img = cv2.imread(img_name) |
|
lmk = np.array([float(x) for x in name_lmk_score[1:-1]], |
|
dtype=np.float32) |
|
lmk = lmk.reshape((5, 2)) |
|
input_blob = embedding.get(img, lmk) |
|
batch_data[2 * img_index][:] = input_blob[0] |
|
batch_data[2 * img_index + 1][:] = input_blob[1] |
|
if (img_index + 1) % rare_size == 0: |
|
print('batch', batch) |
|
img_feats[len(files) - |
|
rare_size:][:] = embedding.forward_db(batch_data) |
|
batch += 1 |
|
faceness_scores.append(name_lmk_score[-1]) |
|
faceness_scores = np.array(faceness_scores).astype(np.float32) |
|
|
|
|
|
return img_feats, faceness_scores |
|
|
|
|
|
|
|
|
|
|
|
def image2template_feature(img_feats=None, templates=None, medias=None): |
|
|
|
|
|
|
|
|
|
|
|
unique_templates = np.unique(templates) |
|
template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) |
|
|
|
for count_template, uqt in enumerate(unique_templates): |
|
|
|
(ind_t,) = np.where(templates == uqt) |
|
face_norm_feats = img_feats[ind_t] |
|
face_medias = medias[ind_t] |
|
unique_medias, unique_media_counts = np.unique(face_medias, |
|
return_counts=True) |
|
media_norm_feats = [] |
|
for u, ct in zip(unique_medias, unique_media_counts): |
|
(ind_m,) = np.where(face_medias == u) |
|
if ct == 1: |
|
media_norm_feats += [face_norm_feats[ind_m]] |
|
else: |
|
media_norm_feats += [ |
|
np.mean(face_norm_feats[ind_m], axis=0, keepdims=True) |
|
] |
|
media_norm_feats = np.array(media_norm_feats) |
|
|
|
template_feats[count_template] = np.sum(media_norm_feats, axis=0) |
|
if count_template % 2000 == 0: |
|
print('Finish Calculating {} template features.'.format( |
|
count_template)) |
|
|
|
template_norm_feats = sklearn.preprocessing.normalize(template_feats) |
|
|
|
return template_norm_feats, unique_templates |
|
|
|
|
|
|
|
|
|
|
|
def verification(template_norm_feats=None, |
|
unique_templates=None, |
|
p1=None, |
|
p2=None): |
|
|
|
|
|
|
|
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) |
|
for count_template, uqt in enumerate(unique_templates): |
|
template2id[uqt] = count_template |
|
|
|
score = np.zeros((len(p1),)) |
|
|
|
total_pairs = np.array(range(len(p1))) |
|
batchsize = 100000 |
|
sublists = [ |
|
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) |
|
] |
|
total_sublists = len(sublists) |
|
for c, s in enumerate(sublists): |
|
feat1 = template_norm_feats[template2id[p1[s]]] |
|
feat2 = template_norm_feats[template2id[p2[s]]] |
|
similarity_score = np.sum(feat1 * feat2, -1) |
|
score[s] = similarity_score.flatten() |
|
if c % 10 == 0: |
|
print('Finish {}/{} pairs.'.format(c, total_sublists)) |
|
return score |
|
|
|
|
|
|
|
def verification2(template_norm_feats=None, |
|
unique_templates=None, |
|
p1=None, |
|
p2=None): |
|
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) |
|
for count_template, uqt in enumerate(unique_templates): |
|
template2id[uqt] = count_template |
|
score = np.zeros((len(p1),)) |
|
total_pairs = np.array(range(len(p1))) |
|
batchsize = 100000 |
|
sublists = [ |
|
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) |
|
] |
|
total_sublists = len(sublists) |
|
for c, s in enumerate(sublists): |
|
feat1 = template_norm_feats[template2id[p1[s]]] |
|
feat2 = template_norm_feats[template2id[p2[s]]] |
|
similarity_score = np.sum(feat1 * feat2, -1) |
|
score[s] = similarity_score.flatten() |
|
if c % 10 == 0: |
|
print('Finish {}/{} pairs.'.format(c, total_sublists)) |
|
return score |
|
|
|
|
|
def read_score(path): |
|
with open(path, 'rb') as fid: |
|
img_feats = pickle.load(fid) |
|
return img_feats |
|
|
|
|
|
|
|
|
|
|
|
|
|
assert target == 'IJBC' or target == 'IJBB' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = timeit.default_timer() |
|
templates, medias = read_template_media_list( |
|
os.path.join('%s/meta' % image_path, |
|
'%s_face_tid_mid.txt' % target.lower())) |
|
stop = timeit.default_timer() |
|
print('Time: %.2f s. ' % (stop - start)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = timeit.default_timer() |
|
p1, p2, label = read_template_pair_list( |
|
os.path.join('%s/meta' % image_path, |
|
'%s_template_pair_label.txt' % target.lower())) |
|
stop = timeit.default_timer() |
|
print('Time: %.2f s. ' % (stop - start)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = timeit.default_timer() |
|
img_path = '%s/loose_crop' % image_path |
|
img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower()) |
|
img_list = open(img_list_path) |
|
files = img_list.readlines() |
|
|
|
files_list = files |
|
|
|
|
|
|
|
img_feats, faceness_scores = get_image_feature(img_path, files_list, |
|
model_path, 0, gpu_id) |
|
stop = timeit.default_timer() |
|
print('Time: %.2f s. ' % (stop - start)) |
|
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], |
|
img_feats.shape[1])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = timeit.default_timer() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if use_flip_test: |
|
|
|
|
|
|
|
img_input_feats = img_feats[:, 0:img_feats.shape[1] // |
|
2] + img_feats[:, img_feats.shape[1] // 2:] |
|
else: |
|
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] |
|
|
|
if use_norm_score: |
|
img_input_feats = img_input_feats |
|
else: |
|
|
|
img_input_feats = img_input_feats / np.sqrt( |
|
np.sum(img_input_feats ** 2, -1, keepdims=True)) |
|
|
|
if use_detector_score: |
|
print(img_input_feats.shape, faceness_scores.shape) |
|
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] |
|
else: |
|
img_input_feats = img_input_feats |
|
|
|
template_norm_feats, unique_templates = image2template_feature( |
|
img_input_feats, templates, medias) |
|
stop = timeit.default_timer() |
|
print('Time: %.2f s. ' % (stop - start)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = timeit.default_timer() |
|
score = verification(template_norm_feats, unique_templates, p1, p2) |
|
stop = timeit.default_timer() |
|
print('Time: %.2f s. ' % (stop - start)) |
|
|
|
|
|
save_path = os.path.join(result_dir, args.job) |
|
|
|
|
|
if not os.path.exists(save_path): |
|
os.makedirs(save_path) |
|
|
|
score_save_file = os.path.join(save_path, "%s.npy" % target.lower()) |
|
np.save(score_save_file, score) |
|
|
|
|
|
|
|
|
|
|
|
files = [score_save_file] |
|
methods = [] |
|
scores = [] |
|
for file in files: |
|
methods.append(Path(file).stem) |
|
scores.append(np.load(file)) |
|
|
|
methods = np.array(methods) |
|
scores = dict(zip(methods, scores)) |
|
colours = dict( |
|
zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2'))) |
|
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] |
|
tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels]) |
|
fig = plt.figure() |
|
for method in methods: |
|
fpr, tpr, _ = roc_curve(label, scores[method]) |
|
roc_auc = auc(fpr, tpr) |
|
fpr = np.flipud(fpr) |
|
tpr = np.flipud(tpr) |
|
plt.plot(fpr, |
|
tpr, |
|
color=colours[method], |
|
lw=1, |
|
label=('[%s (AUC = %0.4f %%)]' % |
|
(method.split('-')[-1], roc_auc * 100))) |
|
tpr_fpr_row = [] |
|
tpr_fpr_row.append("%s-%s" % (method, target)) |
|
for fpr_iter in np.arange(len(x_labels)): |
|
_, min_index = min( |
|
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) |
|
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) |
|
tpr_fpr_table.add_row(tpr_fpr_row) |
|
plt.xlim([10 ** -6, 0.1]) |
|
plt.ylim([0.3, 1.0]) |
|
plt.grid(linestyle='--', linewidth=1) |
|
plt.xticks(x_labels) |
|
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) |
|
plt.xscale('log') |
|
plt.xlabel('False Positive Rate') |
|
plt.ylabel('True Positive Rate') |
|
plt.title('ROC on IJB') |
|
plt.legend(loc="lower right") |
|
fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower())) |
|
print(tpr_fpr_table) |
|
|