Update app.py
Browse files
app.py
CHANGED
@@ -34,26 +34,39 @@ from torchvision.transforms.functional import to_pil_image
|
|
34 |
|
35 |
app = Flask(__name__)
|
36 |
|
37 |
-
#
|
38 |
base_path = 'yisol/IDM-VTON'
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
47 |
-
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
|
48 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
|
49 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
|
50 |
-
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
|
51 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
|
52 |
|
53 |
-
parsing_model = Parsing(0)
|
54 |
-
openpose_model = OpenPose(0)
|
55 |
|
56 |
-
#
|
57 |
pipe = TryonPipeline.from_pretrained(
|
58 |
base_path,
|
59 |
unet=unet,
|
@@ -66,11 +79,12 @@ pipe = TryonPipeline.from_pretrained(
|
|
66 |
scheduler=noise_scheduler,
|
67 |
image_encoder=image_encoder,
|
68 |
torch_dtype=torch.float16,
|
69 |
-
|
|
|
70 |
pipe.unet_encoder = UNet_Encoder
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
transforms.ToTensor(),
|
75 |
transforms.Normalize([0.5], [0.5]),
|
76 |
])
|
@@ -82,11 +96,13 @@ def pil_to_binary_mask(pil_image, threshold=0):
|
|
82 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
83 |
mask[binary_mask] = 1
|
84 |
return Image.fromarray((mask * 255).astype(np.uint8))
|
|
|
|
|
85 |
|
86 |
def get_image_from_url(url):
|
87 |
try:
|
88 |
response = requests.get(url)
|
89 |
-
response.raise_for_status()
|
90 |
img = Image.open(BytesIO(response.content))
|
91 |
return img
|
92 |
except Exception as e:
|
@@ -117,7 +133,12 @@ def save_image(img):
|
|
117 |
return unique_name
|
118 |
|
119 |
@spaces.GPU
|
120 |
-
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie='upper_body'):
|
|
|
|
|
|
|
|
|
|
|
121 |
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
122 |
human_img_orig = dict["background"].convert("RGB")
|
123 |
|
@@ -138,12 +159,11 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
|
|
138 |
if is_checked:
|
139 |
keypoints = openpose_model(human_img.resize((384, 512)))
|
140 |
model_parse, _ = parsing_model(human_img.resize((384, 512)))
|
141 |
-
mask, mask_gray = get_mask_location('hd', categorie, model_parse, keypoints)
|
142 |
mask = mask.resize((768, 1024))
|
143 |
else:
|
144 |
-
mask = dict['layers'][0].convert("RGB").resize((768, 1024))
|
145 |
-
|
146 |
-
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img)
|
147 |
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
|
148 |
|
149 |
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
|
@@ -158,58 +178,66 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
|
|
158 |
with torch.cuda.amp.autocast():
|
159 |
prompt = "model is wearing " + garment_des
|
160 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
161 |
-
(
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
|
215 |
@app.route('/tryon-v2', methods=['POST'])
|
@@ -286,42 +314,51 @@ def tryon():
|
|
286 |
'mask_image': mask_base64
|
287 |
})
|
288 |
|
289 |
-
@spaces.GPU
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
data = request.json
|
295 |
-
img_file = process_image(data['image'])
|
296 |
-
img = img_file.convert("RGB").resize((384, 512))
|
297 |
-
categorie = request.form.get('categorie', 'upper_body') # Paramètre avec valeur par défaut
|
298 |
-
|
299 |
-
# Appliquer la détection des points clés
|
300 |
-
keypoints = openpose_model(img) # Utilise votre modèle
|
301 |
-
model_parse, _ = parsing_model(img) # Utilise votre modèle
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
# Assurez-vous que le modèle est sur le même dispositif
|
308 |
-
parsing_model.to(device)
|
309 |
-
|
310 |
-
# Obtenir le masque
|
311 |
-
mask, mask_gray = get_mask_location('hd', categorie, model_parse, keypoints)
|
312 |
|
313 |
-
#
|
314 |
-
|
315 |
-
|
|
|
316 |
|
317 |
-
#
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
except Exception as e:
|
324 |
-
|
325 |
return jsonify({'error': str(e)}), 500
|
326 |
|
327 |
# Route index
|
|
|
34 |
|
35 |
app = Flask(__name__)
|
36 |
|
37 |
+
# Chemins de base pour les modèles
|
38 |
base_path = 'yisol/IDM-VTON'
|
39 |
|
40 |
+
# Chargement des modèles
|
41 |
+
unet = UNet2DConditionModel.from_pretrained(
|
42 |
+
base_path,
|
43 |
+
subfolder="unet",
|
44 |
+
torch_dtype=torch.float16,
|
45 |
+
force_download=False
|
46 |
+
)
|
47 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
48 |
+
base_path,
|
49 |
+
subfolder="tokenizer",
|
50 |
+
use_fast=False,
|
51 |
+
force_download=False
|
52 |
+
)
|
53 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
54 |
+
base_path,
|
55 |
+
subfolder="tokenizer_2",
|
56 |
+
use_fast=False,
|
57 |
+
force_download=False
|
58 |
+
)
|
59 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
60 |
+
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
|
61 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
|
62 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
|
63 |
+
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
|
64 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
|
65 |
|
66 |
+
parsing_model = Parsing(0)
|
67 |
+
openpose_model = OpenPose(0)
|
68 |
|
69 |
+
# Préparation du pipeline Tryon
|
70 |
pipe = TryonPipeline.from_pretrained(
|
71 |
base_path,
|
72 |
unet=unet,
|
|
|
79 |
scheduler=noise_scheduler,
|
80 |
image_encoder=image_encoder,
|
81 |
torch_dtype=torch.float16,
|
82 |
+
force_download=False
|
83 |
+
)
|
84 |
pipe.unet_encoder = UNet_Encoder
|
85 |
|
86 |
+
# Utilisation des transformations d'images
|
87 |
+
tensor_transfrom = transforms.Compose([
|
88 |
transforms.ToTensor(),
|
89 |
transforms.Normalize([0.5], [0.5]),
|
90 |
])
|
|
|
96 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
97 |
mask[binary_mask] = 1
|
98 |
return Image.fromarray((mask * 255).astype(np.uint8))
|
99 |
+
|
100 |
+
|
101 |
|
102 |
def get_image_from_url(url):
|
103 |
try:
|
104 |
response = requests.get(url)
|
105 |
+
response.raise_for_status() # Vérifie les erreurs HTTP
|
106 |
img = Image.open(BytesIO(response.content))
|
107 |
return img
|
108 |
except Exception as e:
|
|
|
133 |
return unique_name
|
134 |
|
135 |
@spaces.GPU
|
136 |
+
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
|
137 |
+
device = "cuda"
|
138 |
+
openpose_model.preprocessor.body_estimation.model.to(device)
|
139 |
+
pipe.to(device)
|
140 |
+
pipe.unet_encoder.to(device)
|
141 |
+
|
142 |
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
143 |
human_img_orig = dict["background"].convert("RGB")
|
144 |
|
|
|
159 |
if is_checked:
|
160 |
keypoints = openpose_model(human_img.resize((384, 512)))
|
161 |
model_parse, _ = parsing_model(human_img.resize((384, 512)))
|
162 |
+
mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
|
163 |
mask = mask.resize((768, 1024))
|
164 |
else:
|
165 |
+
mask = dict['layers'][0].convert("RGB").resize((768, 1024))#pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
166 |
+
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
|
|
167 |
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
|
168 |
|
169 |
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
|
|
|
178 |
with torch.cuda.amp.autocast():
|
179 |
prompt = "model is wearing " + garment_des
|
180 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
181 |
+
with torch.inference_mode():
|
182 |
+
(
|
183 |
+
prompt_embeds,
|
184 |
+
negative_prompt_embeds,
|
185 |
+
pooled_prompt_embeds,
|
186 |
+
negative_pooled_prompt_embeds,
|
187 |
+
) = pipe.encode_prompt(
|
188 |
+
prompt,
|
189 |
+
num_images_per_prompt=1,
|
190 |
+
do_classifier_free_guidance=True,
|
191 |
+
negative_prompt=negative_prompt,
|
192 |
+
)
|
193 |
+
|
194 |
+
prompt = "a photo of " + garment_des
|
195 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality , change color"
|
196 |
+
if not isinstance(prompt, list):
|
197 |
+
prompt = [prompt] * 1
|
198 |
+
if not isinstance(negative_prompt, list):
|
199 |
+
negative_prompt = [negative_prompt] * 1
|
200 |
+
with torch.inference_mode():
|
201 |
+
(
|
202 |
+
prompt_embeds_c,
|
203 |
+
_,
|
204 |
+
_,
|
205 |
+
_,
|
206 |
+
) = pipe.encode_prompt(
|
207 |
+
prompt,
|
208 |
+
num_images_per_prompt=1,
|
209 |
+
do_classifier_free_guidance=False,
|
210 |
+
negative_prompt=negative_prompt,
|
211 |
+
)
|
212 |
+
|
213 |
+
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
|
214 |
+
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
|
215 |
+
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
216 |
+
images = pipe(
|
217 |
+
prompt_embeds=prompt_embeds.to(device, torch.float16),
|
218 |
+
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
|
219 |
+
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
|
220 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
|
221 |
+
num_inference_steps=denoise_steps,
|
222 |
+
generator=generator,
|
223 |
+
strength=1.5,
|
224 |
+
pose_img=pose_img.to(device, torch.float16),
|
225 |
+
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
|
226 |
+
cloth=garm_tensor.to(device, torch.float16),
|
227 |
+
mask_image=mask,
|
228 |
+
image=human_img,
|
229 |
+
height=1024,
|
230 |
+
width=768,
|
231 |
+
ip_adapter_image=garm_img.resize((768, 1024)),
|
232 |
+
guidance_scale=1.5,
|
233 |
+
)[0]
|
234 |
+
|
235 |
+
if is_checked_crop:
|
236 |
+
out_img = images[0].resize(crop_size)
|
237 |
+
human_img_orig.paste(out_img, (int(left), int(top)))
|
238 |
+
return human_img_orig, mask_gray
|
239 |
+
else:
|
240 |
+
return images[0], mask_gray , mask
|
241 |
|
242 |
|
243 |
@app.route('/tryon-v2', methods=['POST'])
|
|
|
314 |
'mask_image': mask_base64
|
315 |
})
|
316 |
|
317 |
+
@spaces.GPU
|
318 |
+
def generate_mask(human_img, categorie='upper_body'):
|
319 |
+
device = "cuda"
|
320 |
+
openpose_model.preprocessor.body_estimation.model.to(device)
|
321 |
+
pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
+
try:
|
324 |
+
# Redimensionner l'image pour le modèle
|
325 |
+
human_img_resized = human_img.convert("RGB").resize((384, 512))
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
+
# Générer les points clés et le masque
|
328 |
+
keypoints = openpose_model(human_img_resized)
|
329 |
+
model_parse, _ = parsing_model(human_img_resized)
|
330 |
+
mask, _ = get_mask_location('hd', categorie, model_parse, keypoints)
|
331 |
|
332 |
+
# Redimensionner le masque à la taille d'origine de l'image
|
333 |
+
mask_resized = mask.resize(human_img.size)
|
334 |
+
|
335 |
+
return mask_resized
|
336 |
+
except Exception as e:
|
337 |
+
logging.error(f"Error generating mask: {e}")
|
338 |
+
raise e
|
339 |
|
340 |
+
@app.route('/generate_mask', methods=['POST'])
|
341 |
+
def generate_mask_api():
|
342 |
+
try:
|
343 |
+
# Récupérer les données de l'image à partir de la requête
|
344 |
+
data = request.json
|
345 |
+
base64_image = data.get('image')
|
346 |
+
categorie = data.get('categorie', 'upper_body')
|
347 |
+
|
348 |
+
# Décodage de l'image à partir de base64
|
349 |
+
human_img = process_image(base64_image)
|
350 |
+
|
351 |
+
# Appeler la fonction pour générer le masque
|
352 |
+
mask_resized = generate_mask(human_img, categorie)
|
353 |
+
|
354 |
+
# Encodage du masque en base64 pour la réponse
|
355 |
+
mask_base64 = encode_image_to_base64(mask_resized)
|
356 |
+
|
357 |
+
return jsonify({
|
358 |
+
'mask_image': mask_base64
|
359 |
+
}), 200
|
360 |
except Exception as e:
|
361 |
+
logging.error(f"Error generating mask: {e}")
|
362 |
return jsonify({'error': str(e)}), 500
|
363 |
|
364 |
# Route index
|