IDM-VTON / app.py
Saad0KH's picture
Update app.py
0b2eb1d verified
raw
history blame
14.4 kB
import os
import asyncio
import requests
from flask import Flask, request, jsonify,send_file
from PIL import Image
from io import BytesIO
import torch
import base64
import io
import logging
import gradio as gr
import numpy as np
import spaces
import uuid
import random
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
AutoTokenizer,
)
from diffusers import DDPMScheduler, AutoencoderKL
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
app = Flask(__name__)
# Chemins de base pour les modèles
base_path = 'yisol/IDM-VTON'
# Chargement des modèles
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
force_download=False
)
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
use_fast=False,
force_download=False
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
use_fast=False,
force_download=False
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
# Préparation du pipeline Tryon
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
force_download=False
)
pipe.unet_encoder = UNet_Encoder
# Utilisation des transformations d'images
tensor_transfrom = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
mask[binary_mask] = 1
return Image.fromarray((mask * 255).astype(np.uint8))
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status() # Vérifie les erreurs HTTP
img = Image.open(BytesIO(response.content))
return img
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
def decode_image_from_base64(base64_str):
try:
img_data = base64.b64decode(base64_str)
img = Image.open(BytesIO(img_data))
return img
except Exception as e:
logging.error(f"Error decoding image: {e}")
raise
def encode_image_to_base64(img):
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logging.error(f"Error encoding image: {e}")
raise
def save_image(img):
unique_name = str(uuid.uuid4()) + ".webp"
img.save(unique_name, format="WEBP", lossless=True)
return unique_name
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img = garm_img.convert("RGB").resize((768, 1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768, 1024))
else:
human_img = human_img_orig.resize((768, 1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384, 512)))
model_parse, _ = parsing_model(human_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = dict['layers'][0].convert("RGB").resize((768, 1024))#pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
pose_img = args.func(args, human_img_arg)
pose_img = pose_img[:, :, ::-1]
pose_img = Image.fromarray(pose_img).resize((768, 1024))
with torch.no_grad():
with torch.cuda.amp.autocast():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, list):
prompt = [prompt] * 1
if not isinstance(negative_prompt, list):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_img.to(device, torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
cloth=garm_tensor.to(device, torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img.resize((768, 1024)),
guidance_scale=2.0,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
return human_img_orig, mask_gray
else:
return images[0], mask_gray , mask
@app.route('/tryon-v2', methods=['POST'])
def tryon_v2():
data = request.json
human_image_data = data['human_image']
garment_image_data = data['garment_image']
human_image = process_image(human_image_data)
garment_image = process_image(garment_image_data)
description = data.get('description')
use_auto_mask = data.get('use_auto_mask', True)
use_auto_crop = data.get('use_auto_crop', False)
denoise_steps = int(data.get('denoise_steps', 30))
seed = int(data.get('seed', random.randint(0, 9999999)))
categorie = data.get('categorie', 'upper_body')
mask_image = None
if 'mask_image' in data:
mask_image_data = data['mask_image']
mask_image = process_image(mask_image_data)
human_dict = {
'background': human_image,
'layers': [mask_image] if not use_auto_mask else None,
'composite': None
}
output_image, mask_image , mask = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, categorie)
return jsonify({
'image_id': save_image(output_image),
'mask_gray_id' : save_image(mask_image),
'mask_id' : save_image(mask)
})
def clear_gpu_memory():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def process_image(image_data):
# Vérifie si l'image est en base64 ou URL
if image_data.startswith('http://') or image_data.startswith('https://'):
return get_image_from_url(image_data) # Télécharge l'image depuis l'URL
else:
return decode_image_from_base64(image_data) # Décode l'image base64
@app.route('/tryon', methods=['POST'])
def tryon():
data = request.json
human_image = process_image(data['human_image'])
garment_image = process_image(data['garment_image'])
description = data.get('description')
use_auto_mask = data.get('use_auto_mask', True)
use_auto_crop = data.get('use_auto_crop', False)
denoise_steps = int(data.get('denoise_steps', 30))
seed = int(data.get('seed', 42))
categorie = data.get('categorie' , 'upper_body')
human_dict = {
'background': human_image,
'layers': [human_image] if not use_auto_mask else None,
'composite': None
}
clear_gpu_memory()
output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
output_base64 = encode_image_to_base64(output_image)
mask_base64 = encode_image_to_base64(mask_image)
return jsonify({
'output_image': output_base64,
'mask_image': mask_base64
})
# Route index
@app.route('/', methods=['GET'])
def index():
# Renvoyer l'image
try:
return 'Welcome to IDM VTON API'
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/webp')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
@spaces.GPU
def generate_mask(human_img, categorie='upper_body'):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
try:
# Redimensionner l'image pour le modèle
human_img_resized = human_img.convert("RGB").resize((384, 512))
# Générer les points clés et le masque
keypoints = openpose_model(human_img_resized)
model_parse, _ = parsing_model(human_img_resized)
mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
mask = mask.resize((768, 1024))
# Redimensionner le masque à la taille d'origine de l'image
mask_resized = mask.resize(human_img.size)
return mask_resized
except Exception as e:
logging.error(f"Error generating mask: {e}")
raise e
@app.route('/generate_mask', methods=['POST'])
def generate_mask_api():
try:
# Récupérer les données de l'image à partir de la requête
data = request.json
base64_image = data.get('image')
categorie = data.get('categorie', 'upper_body')
# Décodage de l'image à partir de base64
human_img = process_image(base64_image)
# Appeler la fonction pour générer le masque
mask_resized = generate_mask(human_img, categorie)
# Encodage du masque en base64 pour la réponse
mask_base64 = encode_image_to_base64(mask_resized)
return jsonify({
'mask_image': mask_base64
}), 200
except Exception as e:
logging.error(f"Error generating mask: {e}")
return jsonify({'error': str(e)}), 500
if __name__ == "__main__":
app.run(debug=False, host="0.0.0.0", port=7860)