Spaces:
Saad0KH
/
Running on Zero

File size: 13,982 Bytes
83d675a
228b169
3e611b0
2365c51
 
 
 
b92eece
2365c51
b92eece
2365c51
 
 
b92eece
2365c51
 
 
 
004975c
83d675a
 
 
 
2365c51
004975c
b92eece
2365c51
 
 
83d675a
 
 
2365c51
848b0e8
 
 
3e611b0
b92eece
ccd0584
3e611b0
2365c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b92eece
3e611b0
 
 
 
 
83d675a
62072ec
 
 
3e611b0
62072ec
3e611b0
 
 
 
 
 
 
 
 
 
 
 
62072ec
 
f5c7dc7
3e611b0
 
 
 
 
 
83d675a
2365c51
 
 
 
3e611b0
 
 
 
83d675a
 
 
 
2365c51
 
 
83d675a
 
 
 
 
 
 
2365c51
 
83d675a
 
 
 
 
 
 
 
3e611b0
83d675a
 
 
 
 
2365c51
 
83d675a
 
95c0fd4
 
83d675a
 
 
 
 
3ce4611
2365c51
83d675a
b92eece
 
2365c51
 
b92eece
 
2365c51
 
 
b92eece
3ce4611
83d675a
3ce4611
83d675a
b92eece
95c0fd4
 
 
83d675a
 
95c0fd4
b92eece
83d675a
 
b92eece
 
 
95c0fd4
 
2365c51
3ce4611
b92eece
2365c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069f748
2365c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95c0fd4
2365c51
 
 
 
 
 
19f2459
2365c51
 
 
 
 
 
 
3ce4611
19f2459
2365c51
b92eece
 
 
 
 
83d675a
95c0fd4
e3da8fa
95c0fd4
228b169
95c0fd4
 
 
e3da8fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e611b0
e3da8fa
 
 
 
 
3e611b0
95c0fd4
62072ec
3e611b0
95c0fd4
 
62072ec
2365c51
b92eece
 
 
83d675a
b92eece
2365c51
 
 
 
 
83d675a
 
b92eece
 
2365c51
 
 
 
 
 
 
 
 
 
 
 
 
c1c4aec
2365c51
 
 
 
 
 
 
 
 
 
 
a98a87d
 
 
 
60362b7
 
 
a98a87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2365c51
3e611b0
 
42bd0db
3e611b0
 
 
 
 
 
83d675a
b92eece
 
 
 
 
 
 
 
 
 
 
 
83d675a
2365c51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import asyncio
import requests
from flask import Flask, request, jsonify,send_file
from PIL import Image
from io import BytesIO
import torch
import base64
import io 
import logging
import gradio as gr
import numpy as np
import spaces
import uuid
import random
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    AutoTokenizer,
)
from diffusers import DDPMScheduler, AutoencoderKL
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image

app = Flask(__name__)

# Chemins de base pour les modèles
base_path = 'yisol/IDM-VTON'

# Chargement des modèles
unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
    force_download=False
)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    use_fast=False,
    force_download=False
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    use_fast=False,
    force_download=False
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

# Préparation du pipeline Tryon
pipe = TryonPipeline.from_pretrained(
    base_path,
    unet=unet,
    vae=vae,
    feature_extractor=CLIPImageProcessor(),
    text_encoder=text_encoder_one,
    text_encoder_2=text_encoder_two,
    tokenizer=tokenizer_one,
    tokenizer_2=tokenizer_two,
    scheduler=noise_scheduler,
    image_encoder=image_encoder,
    torch_dtype=torch.float16,
    force_download=False
)
pipe.unet_encoder = UNet_Encoder

# Utilisation des transformations d'images
tensor_transfrom = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
])

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    mask[binary_mask] = 1
    return Image.fromarray((mask * 255).astype(np.uint8))
    


def get_image_from_url(url):
    try:
        response = requests.get(url)
        response.raise_for_status()  # Vérifie les erreurs HTTP
        img = Image.open(BytesIO(response.content))
        return img
    except Exception as e:
        logging.error(f"Error fetching image from URL: {e}")
        raise

def decode_image_from_base64(base64_str):
    try:
        img_data = base64.b64decode(base64_str)
        img = Image.open(BytesIO(img_data))
        return img
    except Exception as e:
        logging.error(f"Error decoding image: {e}")
        raise

def encode_image_to_base64(img):
    try:
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")
    except Exception as e:
        logging.error(f"Error encoding image: {e}")
        raise

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".webp"  
    img.save(unique_name, format="WEBP", lossless=True) 
    return unique_name

@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
    device = "cuda"
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img = garm_img.convert("RGB").resize((768, 1024))
    human_img_orig = dict["background"].convert("RGB")

    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768, 1024))
    else:
        human_img = human_img_orig.resize((768, 1024))

    if is_checked:
        keypoints = openpose_model(human_img.resize((384, 512)))
        model_parse, _ = parsing_model(human_img.resize((384, 512)))
        mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
        mask = mask.resize((768, 1024))
    else:
        mask = dict['layers'][0].convert("RGB").resize((768, 1024))#pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
    mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

    human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    pose_img = args.func(args, human_img_arg)
    pose_img = pose_img[:, :, ::-1]
    pose_img = Image.fromarray(pose_img).resize((768, 1024))

    with torch.no_grad():
        with torch.cuda.amp.autocast():
            prompt = "model is wearing " + garment_des
            negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
            with torch.inference_mode():
                (
                    prompt_embeds,
                    negative_prompt_embeds,
                    pooled_prompt_embeds,
                    negative_pooled_prompt_embeds,
                ) = pipe.encode_prompt(
                    prompt,
                    num_images_per_prompt=1,
                    do_classifier_free_guidance=True,
                    negative_prompt=negative_prompt,
                )

                prompt = "a photo of " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality , change color"
                if not isinstance(prompt, list):
                    prompt = [prompt] * 1
                if not isinstance(negative_prompt, list):
                    negative_prompt = [negative_prompt] * 1
                with torch.inference_mode():
                    (
                        prompt_embeds_c,
                        _,
                        _,
                        _,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=False,
                        negative_prompt=negative_prompt,
                    )

                pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
                garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
                generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                images = pipe(
                    prompt_embeds=prompt_embeds.to(device, torch.float16),
                    negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
                    pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
                    negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
                    num_inference_steps=denoise_steps,
                    generator=generator,
                    strength=1.5,
                    pose_img=pose_img.to(device, torch.float16),
                    text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
                    cloth=garm_tensor.to(device, torch.float16),
                    mask_image=mask,
                    image=human_img,
                    height=1024,
                    width=768,
                    ip_adapter_image=garm_img.resize((768, 1024)),
                    guidance_scale=1.5,
                )[0]

    if is_checked_crop:
        out_img = images[0].resize(crop_size)
        human_img_orig.paste(out_img, (int(left), int(top)))
        return human_img_orig, mask_gray
    else:
        return images[0], mask_gray , mask

        
@app.route('/tryon-v2', methods=['POST'])
def tryon_v2():

    data = request.json
    human_image_data = data['human_image']
    garment_image_data = data['garment_image']

    human_image = process_image(human_image_data)
    garment_image = process_image(garment_image_data)

    description = data.get('description')
    use_auto_mask = data.get('use_auto_mask', True)
    use_auto_crop = data.get('use_auto_crop', False)
    denoise_steps = int(data.get('denoise_steps', 30))
    seed = int(data.get('seed', random.randint(0, 9999999)))
    categorie = data.get('categorie', 'upper_body')

    mask_image = None
    if 'mask_image' in data:
        mask_image_data = data['mask_image']
        mask_image = process_image(mask_image_data)

    human_dict = {
        'background': human_image,
        'layers': [mask_image] if not use_auto_mask else None,
        'composite': None
    }

    output_image, mask_image , mask = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, categorie)
    return jsonify({
        'image_id': save_image(output_image),
        'mask_gray_id' : save_image(mask_image),
        'mask_id' : save_image(mask)
    })

def clear_gpu_memory():
    torch.cuda.empty_cache()
    torch.cuda.synchronize()

def process_image(image_data):
    # Vérifie si l'image est en base64 ou URL
    if image_data.startswith('http://') or image_data.startswith('https://'):
        return get_image_from_url(image_data)  # Télécharge l'image depuis l'URL
    else:
        return decode_image_from_base64(image_data)  # Décode l'image base64

@app.route('/tryon', methods=['POST'])
def tryon():
    data = request.json
    human_image = process_image(data['human_image'])
    garment_image = process_image(data['garment_image'])
    description = data.get('description')
    use_auto_mask = data.get('use_auto_mask', True)
    use_auto_crop = data.get('use_auto_crop', False)
    denoise_steps = int(data.get('denoise_steps', 30))
    seed = int(data.get('seed', 42))
    categorie = data.get('categorie' , 'upper_body')
    human_dict = {
        'background': human_image,
        'layers': [human_image] if not use_auto_mask else None,
        'composite': None
    }
    clear_gpu_memory()

    output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)

    output_base64 = encode_image_to_base64(output_image)
    mask_base64 = encode_image_to_base64(mask_image)

    return jsonify({
        'output_image': output_base64,
        'mask_image': mask_base64
    })

@app.route('/get_mask', methods=['POST'])
def get_mask():
    try:
        # Récupérer l'image du corps à partir de la requête
        data = request.json
        img_file = process_image(data['image'])
        img = img_file.convert("RGB").resize((384, 512))
        categorie = request.form.get('categorie', 'upper_body')  # Paramètre avec valeur par défaut

        # Appliquer la détection des points clés
        keypoints = openpose_model(img)  # Utilise votre modèle
        model_parse, _ = parsing_model(img)  # Utilise votre modèle

        # Obtenir le masque
        mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
        
        # Convertir le masque en image (si nécessaire)
        mask_gray = (1 - transforms.ToTensor()(mask_gray)) * tensor_transfrom(img)
        mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

        # Convertir l'image en base64 si besoin pour le retour
        img_byte_arr = io.BytesIO()
        mask_gray.save(img_byte_arr, format='PNG')
        img_byte_arr.seek(0)
        return jsonify({'mask': img_byte_arr.getvalue().decode('latin1')})  # Utiliser une méthode appropriée pour l'encodage

    except Exception as e:
        return jsonify({'error': str(e)}), 500

# Route index
@app.route('/', methods=['GET'])
def index():

    # Renvoyer l'image
    try:
        return 'Welcome to IDM VTON API'
    except FileNotFoundError:
        return jsonify({'error': 'Image not found'}), 404

# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
    # Construire le chemin complet de l'image
    image_path = image_id  # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde

    # Renvoyer l'image
    try:
        return send_file(image_path, mimetype='image/webp')
    except FileNotFoundError:
        return jsonify({'error': 'Image not found'}), 404

if __name__ == "__main__":
    app.run(debug=False, host="0.0.0.0", port=7860)