File size: 13,982 Bytes
83d675a 228b169 3e611b0 2365c51 b92eece 2365c51 b92eece 2365c51 b92eece 2365c51 004975c 83d675a 2365c51 004975c b92eece 2365c51 83d675a 2365c51 848b0e8 3e611b0 b92eece ccd0584 3e611b0 2365c51 b92eece 3e611b0 83d675a 62072ec 3e611b0 62072ec 3e611b0 62072ec f5c7dc7 3e611b0 83d675a 2365c51 3e611b0 83d675a 2365c51 83d675a 2365c51 83d675a 3e611b0 83d675a 2365c51 83d675a 95c0fd4 83d675a 3ce4611 2365c51 83d675a b92eece 2365c51 b92eece 2365c51 b92eece 3ce4611 83d675a 3ce4611 83d675a b92eece 95c0fd4 83d675a 95c0fd4 b92eece 83d675a b92eece 95c0fd4 2365c51 3ce4611 b92eece 2365c51 069f748 2365c51 95c0fd4 2365c51 19f2459 2365c51 3ce4611 19f2459 2365c51 b92eece 83d675a 95c0fd4 e3da8fa 95c0fd4 228b169 95c0fd4 e3da8fa 3e611b0 e3da8fa 3e611b0 95c0fd4 62072ec 3e611b0 95c0fd4 62072ec 2365c51 b92eece 83d675a b92eece 2365c51 83d675a b92eece 2365c51 c1c4aec 2365c51 a98a87d 60362b7 a98a87d 2365c51 3e611b0 42bd0db 3e611b0 83d675a b92eece 83d675a 2365c51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os
import asyncio
import requests
from flask import Flask, request, jsonify,send_file
from PIL import Image
from io import BytesIO
import torch
import base64
import io
import logging
import gradio as gr
import numpy as np
import spaces
import uuid
import random
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
AutoTokenizer,
)
from diffusers import DDPMScheduler, AutoencoderKL
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
app = Flask(__name__)
# Chemins de base pour les modèles
base_path = 'yisol/IDM-VTON'
# Chargement des modèles
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
force_download=False
)
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
use_fast=False,
force_download=False
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
use_fast=False,
force_download=False
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
# Préparation du pipeline Tryon
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
force_download=False
)
pipe.unet_encoder = UNet_Encoder
# Utilisation des transformations d'images
tensor_transfrom = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
mask[binary_mask] = 1
return Image.fromarray((mask * 255).astype(np.uint8))
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status() # Vérifie les erreurs HTTP
img = Image.open(BytesIO(response.content))
return img
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
def decode_image_from_base64(base64_str):
try:
img_data = base64.b64decode(base64_str)
img = Image.open(BytesIO(img_data))
return img
except Exception as e:
logging.error(f"Error decoding image: {e}")
raise
def encode_image_to_base64(img):
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logging.error(f"Error encoding image: {e}")
raise
def save_image(img):
unique_name = str(uuid.uuid4()) + ".webp"
img.save(unique_name, format="WEBP", lossless=True)
return unique_name
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img = garm_img.convert("RGB").resize((768, 1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768, 1024))
else:
human_img = human_img_orig.resize((768, 1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384, 512)))
model_parse, _ = parsing_model(human_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = dict['layers'][0].convert("RGB").resize((768, 1024))#pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
pose_img = args.func(args, human_img_arg)
pose_img = pose_img[:, :, ::-1]
pose_img = Image.fromarray(pose_img).resize((768, 1024))
with torch.no_grad():
with torch.cuda.amp.autocast():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality , change color"
if not isinstance(prompt, list):
prompt = [prompt] * 1
if not isinstance(negative_prompt, list):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.5,
pose_img=pose_img.to(device, torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
cloth=garm_tensor.to(device, torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img.resize((768, 1024)),
guidance_scale=1.5,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
return human_img_orig, mask_gray
else:
return images[0], mask_gray , mask
@app.route('/tryon-v2', methods=['POST'])
def tryon_v2():
data = request.json
human_image_data = data['human_image']
garment_image_data = data['garment_image']
human_image = process_image(human_image_data)
garment_image = process_image(garment_image_data)
description = data.get('description')
use_auto_mask = data.get('use_auto_mask', True)
use_auto_crop = data.get('use_auto_crop', False)
denoise_steps = int(data.get('denoise_steps', 30))
seed = int(data.get('seed', random.randint(0, 9999999)))
categorie = data.get('categorie', 'upper_body')
mask_image = None
if 'mask_image' in data:
mask_image_data = data['mask_image']
mask_image = process_image(mask_image_data)
human_dict = {
'background': human_image,
'layers': [mask_image] if not use_auto_mask else None,
'composite': None
}
output_image, mask_image , mask = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, categorie)
return jsonify({
'image_id': save_image(output_image),
'mask_gray_id' : save_image(mask_image),
'mask_id' : save_image(mask)
})
def clear_gpu_memory():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def process_image(image_data):
# Vérifie si l'image est en base64 ou URL
if image_data.startswith('http://') or image_data.startswith('https://'):
return get_image_from_url(image_data) # Télécharge l'image depuis l'URL
else:
return decode_image_from_base64(image_data) # Décode l'image base64
@app.route('/tryon', methods=['POST'])
def tryon():
data = request.json
human_image = process_image(data['human_image'])
garment_image = process_image(data['garment_image'])
description = data.get('description')
use_auto_mask = data.get('use_auto_mask', True)
use_auto_crop = data.get('use_auto_crop', False)
denoise_steps = int(data.get('denoise_steps', 30))
seed = int(data.get('seed', 42))
categorie = data.get('categorie' , 'upper_body')
human_dict = {
'background': human_image,
'layers': [human_image] if not use_auto_mask else None,
'composite': None
}
clear_gpu_memory()
output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
output_base64 = encode_image_to_base64(output_image)
mask_base64 = encode_image_to_base64(mask_image)
return jsonify({
'output_image': output_base64,
'mask_image': mask_base64
})
@app.route('/get_mask', methods=['POST'])
def get_mask():
try:
# Récupérer l'image du corps à partir de la requête
data = request.json
img_file = process_image(data['image'])
img = img_file.convert("RGB").resize((384, 512))
categorie = request.form.get('categorie', 'upper_body') # Paramètre avec valeur par défaut
# Appliquer la détection des points clés
keypoints = openpose_model(img) # Utilise votre modèle
model_parse, _ = parsing_model(img) # Utilise votre modèle
# Obtenir le masque
mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
# Convertir le masque en image (si nécessaire)
mask_gray = (1 - transforms.ToTensor()(mask_gray)) * tensor_transfrom(img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
# Convertir l'image en base64 si besoin pour le retour
img_byte_arr = io.BytesIO()
mask_gray.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
return jsonify({'mask': img_byte_arr.getvalue().decode('latin1')}) # Utiliser une méthode appropriée pour l'encodage
except Exception as e:
return jsonify({'error': str(e)}), 500
# Route index
@app.route('/', methods=['GET'])
def index():
# Renvoyer l'image
try:
return 'Welcome to IDM VTON API'
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/webp')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
if __name__ == "__main__":
app.run(debug=False, host="0.0.0.0", port=7860) |