Spaces:
Saad0KH
/
Running on Zero

File size: 7,237 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) Facebook, Inc. and its affiliates.
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
"""

import functools
import numpy as np
import torch
import torch.distributed as dist

_LOCAL_PROCESS_GROUP = None
_MISSING_LOCAL_PG_ERROR = (
    "Local process group is not yet created! Please use detectron2's `launch()` "
    "to start processes and initialize pytorch process group. If you need to start "
    "processes in other ways, please call comm.create_local_process_group("
    "num_workers_per_machine) after calling torch.distributed.init_process_group()."
)


def get_world_size() -> int:
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size()


def get_rank() -> int:
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    return dist.get_rank()


@functools.lru_cache()
def create_local_process_group(num_workers_per_machine: int) -> None:
    """
    Create a process group that contains ranks within the same machine.

    Detectron2's launch() in engine/launch.py will call this function. If you start
    workers without launch(), you'll have to also call this. Otherwise utilities
    like `get_local_rank()` will not work.

    This function contains a barrier. All processes must call it together.

    Args:
        num_workers_per_machine: the number of worker processes per machine. Typically
          the number of GPUs.
    """
    global _LOCAL_PROCESS_GROUP
    assert _LOCAL_PROCESS_GROUP is None
    assert get_world_size() % num_workers_per_machine == 0
    num_machines = get_world_size() // num_workers_per_machine
    machine_rank = get_rank() // num_workers_per_machine
    for i in range(num_machines):
        ranks_on_i = list(range(i * num_workers_per_machine, (i + 1) * num_workers_per_machine))
        pg = dist.new_group(ranks_on_i)
        if i == machine_rank:
            _LOCAL_PROCESS_GROUP = pg


def get_local_process_group():
    """
    Returns:
        A torch process group which only includes processes that are on the same
        machine as the current process. This group can be useful for communication
        within a machine, e.g. a per-machine SyncBN.
    """
    assert _LOCAL_PROCESS_GROUP is not None, _MISSING_LOCAL_PG_ERROR
    return _LOCAL_PROCESS_GROUP


def get_local_rank() -> int:
    """
    Returns:
        The rank of the current process within the local (per-machine) process group.
    """
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    assert _LOCAL_PROCESS_GROUP is not None, _MISSING_LOCAL_PG_ERROR
    return dist.get_rank(group=_LOCAL_PROCESS_GROUP)


def get_local_size() -> int:
    """
    Returns:
        The size of the per-machine process group,
        i.e. the number of processes per machine.
    """
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    assert _LOCAL_PROCESS_GROUP is not None, _MISSING_LOCAL_PG_ERROR
    return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)


def is_main_process() -> bool:
    return get_rank() == 0


def synchronize():
    """
    Helper function to synchronize (barrier) among all processes when
    using distributed training
    """
    if not dist.is_available():
        return
    if not dist.is_initialized():
        return
    world_size = dist.get_world_size()
    if world_size == 1:
        return
    if dist.get_backend() == dist.Backend.NCCL:
        # This argument is needed to avoid warnings.
        # It's valid only for NCCL backend.
        dist.barrier(device_ids=[torch.cuda.current_device()])
    else:
        dist.barrier()


@functools.lru_cache()
def _get_global_gloo_group():
    """
    Return a process group based on gloo backend, containing all the ranks
    The result is cached.
    """
    if dist.get_backend() == "nccl":
        return dist.new_group(backend="gloo")
    else:
        return dist.group.WORLD


def all_gather(data, group=None):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors).

    Args:
        data: any picklable object
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.

    Returns:
        list[data]: list of data gathered from each rank
    """
    if get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()  # use CPU group by default, to reduce GPU RAM usage.
    world_size = dist.get_world_size(group)
    if world_size == 1:
        return [data]

    output = [None for _ in range(world_size)]
    dist.all_gather_object(output, data, group=group)
    return output


def gather(data, dst=0, group=None):
    """
    Run gather on arbitrary picklable data (not necessarily tensors).

    Args:
        data: any picklable object
        dst (int): destination rank
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.

    Returns:
        list[data]: on dst, a list of data gathered from each rank. Otherwise,
            an empty list.
    """
    if get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()
    world_size = dist.get_world_size(group=group)
    if world_size == 1:
        return [data]
    rank = dist.get_rank(group=group)

    if rank == dst:
        output = [None for _ in range(world_size)]
        dist.gather_object(data, output, dst=dst, group=group)
        return output
    else:
        dist.gather_object(data, None, dst=dst, group=group)
        return []


def shared_random_seed():
    """
    Returns:
        int: a random number that is the same across all workers.
        If workers need a shared RNG, they can use this shared seed to
        create one.

    All workers must call this function, otherwise it will deadlock.
    """
    ints = np.random.randint(2**31)
    all_ints = all_gather(ints)
    return all_ints[0]


def reduce_dict(input_dict, average=True):
    """
    Reduce the values in the dictionary from all processes so that process with rank
    0 has the reduced results.

    Args:
        input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor.
        average (bool): whether to do average or sum

    Returns:
        a dict with the same keys as input_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.reduce(values, dst=0)
        if dist.get_rank() == 0 and average:
            # only main process gets accumulated, so only divide by
            # world_size in this case
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict