File size: 7,160 Bytes
a87bc00
2e83a41
 
a87bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8ad01
 
a87bc00
 
 
 
cd8ad01
a87bc00
7a966d7
a87bc00
 
 
 
7b11062
d887fe7
a87bc00
 
 
 
 
c27c36d
a87bc00
 
aa5087f
 
8b674fc
a87bc00
 
 
 
d963f31
 
a87bc00
 
 
 
5f546a1
 
 
 
 
 
a87bc00
 
5f546a1
a87bc00
 
 
 
 
 
 
 
 
 
 
c90d42e
a87bc00
 
c90d42e
 
a87bc00
 
 
 
 
 
 
c90d42e
a87bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6542f5d
a87bc00
6542f5d
a87bc00
 
 
6542f5d
 
 
 
a87bc00
 
 
6542f5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a966d7
 
 
 
 
ecb57b0
4daddb9
 
6542f5d
a87bc00
 
 
 
6542f5d
 
 
 
 
 
 
 
 
 
 
6ba451d
6542f5d
 
 
 
 
 
 
 
 
 
 
 
 
 
a87bc00
6542f5d
 
8d97970
 
 
 
6542f5d
a87bc00
 
 
6542f5d
a87bc00
 
 
 
 
6542f5d
 
 
 
 
 
 
4daddb9
6542f5d
a87bc00
 
ea965a5
a87bc00
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# -*- coding: utf-8 -*-
"""
# MANIFESTO ANALYSIS

## IMPORTING LIBRARIES
"""

# Commented out IPython magic to ensure Python compatibility.
# %%capture
# !pip install tika
# !pip install clean-text
# !pip install gradio

# Commented out IPython magic to ensure Python compatibility.

import io
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize,sent_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
#import tika
#from tika import parser
from nltk.corpus import stopwords 
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from cleantext import clean
import textract

import urllib.request
import nltk.corpus  
from nltk.text import Text
from io import StringIO
import sys 
import pandas as pd
import cv2
import re

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from zipfile import ZipFile
import contractions
import unidecode


nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('averaged_perceptron_tagger')
nltk.download('words')


"""## PARSING FILES"""

#def Parsing(parsed_text):
  #parsed_text=parsed_text.name
  #raw_party =parser.from_file(parsed_text) 
 # raw_party = raw_party['content']
#  return clean(raw_party)
  
def Parsing(parsed_text):
  parsed_text=parsed_text.name
  raw_party =textract.process(parsed_text, encoding='ascii',method='pdfminer') 
  return clean(raw_party)


#Added more stopwords to avoid irrelevant terms
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')

"""## PREPROCESSING"""

def clean_text(text):
  '''
  The function which returns clean text
  '''
  text = text.encode("ascii", errors="ignore").decode("ascii")  # remove non-asciicharacters
  text=unidecode.unidecode(text)# diacritics remove
  text=contractions.fix(text) # contraction fix
  text = re.sub(r"\n", " ", text)
  text = re.sub(r"\n\n", " ", text)
  text = re.sub(r"\t", " ", text)
  text = re.sub(r"/ ", " ", text)
  text = text.strip(" ")
  text = re.sub(" +", " ", text).strip()  # get rid of multiple spaces and replace with a single
  
  text = [word for word in text.split() if word not in stop_words]
  text = ' '.join(text)
  return text

# text_Party=clean_text(raw_party)

def Preprocess(textParty):
  '''
  Removing special characters extra spaces
  '''
  text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty) 
  #Removing all stop words
  pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
  text2Party = pattern.sub('', text1Party)
  # fdist_cong = FreqDist(word_tokens_cong)
  return text2Party





# Using Concordance,you can see each time a word is used, along with its 
# immediate context. It can give you a peek into how a word is being used
# at the sentence level and what words are used with it. 

def concordance(text_Party,strng):
  word_tokens_party = word_tokenize(text_Party)
  moby = Text(word_tokens_party) 
  resultList = []
  for i in range(0,1):
      save_stdout = sys.stdout
      result = StringIO()
      sys.stdout = result
      moby.concordance(strng,lines=10,width=82)    
      sys.stdout = save_stdout      
  s=result.getvalue().splitlines()
  return result.getvalue()
  

def normalize(d, target=1.0):
   raw = sum(d.values())
   factor = target/raw
   return {key:value*factor for key,value in d.items()}

def fDistance(text2Party):
  '''
  most frequent words search
  '''
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party).most_common(10)
  mem={}
  for x in fdistance:
    mem[x[0]]=x[1]
  return normalize(mem)

def fDistancePlot(text2Party,plotN=30):
  '''
  most frequent words visualization
  '''
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party)
  plt.figure(figsize=(4,6))
  fdistance.plot(plotN)
  plt.savefig('distplot.png')
  plt.clf()



def getSubjectivity(text):
   return TextBlob(text).sentiment.subjectivity

# Create a function to get the polarity
def getPolarity(text):
   return  TextBlob(text).sentiment.polarity
  
  
def getAnalysis(score):
  if score < 0:
    return 'Negative'
  elif score == 0:
    return 'Neutral'
  else:
    return 'Positive'

#http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf
url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
path_input = "./Bjp_Manifesto_2019.pdf'"
urllib.request.urlretrieve(url, filename=path_input)

url="https://drive.google.com/uc?id=1BLCiy_BWilfVdrUH8kbO-44DJevwO5CG&export=download"
path_input = "./Aap_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)

def analysis(Manifesto,Search):
  raw_party = Parsing(Manifesto)
  text_Party=clean_text(raw_party)
  text_Party= Preprocess(text_Party)

  df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
  df['Subjectivity'] = df['Content'].apply(getSubjectivity)
  df['Polarity'] = df['Content'].apply(getPolarity)
  df['Analysis on Polarity'] = df['Polarity'].apply(getAnalysis)
  df['Analysis on Subjectivity'] = df['Subjectivity'].apply(getAnalysis)
  plt.title('Sentiment Analysis')
  plt.xlabel('Sentiment')
  plt.ylabel('Counts')
  plt.figure(figsize=(4,6))
  df['Analysis on Polarity'].value_counts().plot(kind ='bar')
  plt.savefig('./sentimentAnalysis.png')
  plt.clf()
  
  plt.figure(figsize=(4,6))
  df['Analysis on Subjectivity'].value_counts().plot(kind ='bar')
  plt.savefig('sentimentAnalysis2.png')
  plt.clf()  
  
  wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
  plt.figure(figsize=(4,3))
  plt.imshow(wordcloud, interpolation="bilinear")
  plt.axis("off")
  plt.savefig('wordcloud.png')
  plt.clf()  
  
  fdist_Party=fDistance(text_Party)
  fDistancePlot(text_Party)

  img1=cv2.imread('/sentimentAnalysis.png')
  img2=cv2.imread('/wordcloud.png')
  img3=cv2.imread('/sentimentAnalysis2.png')
  img4=cv2.imread('/distplot.png')
  
  searchRes=concordance(text_Party,Search)
  searChRes=clean(searchRes)
  searChRes=searchRes.replace(Search,"\u0332".join(Search))
  return searChRes,fdist_Party,img4,img1,img2,img3

  
Search_txt=gr.inputs.Textbox()   
filePdf = gr.inputs.File()
text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
mfw=gr.outputs.Label(label="Most Relevant Topics")
# mfw2=gr.outputs.Image(label="Most Relevant Topics Plot")
plot1=gr.outputs. Image(label='Sentiment Analysis')
plot2=gr.outputs.Image(label='Word Cloud')
plot3=gr.outputs.Image(label='Subjectivity')
plot4=gr.outputs.Image(label='Frequency Distribution')

io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot4,plot1,plot2,plot3], title='Manifesto Analysis',examples=[['./Bjp_Manifesto_2019.pdf','india'],['./Aap_Manifesto_2019.pdf',]])
io.launch(debug=False,share=True)


#examples=[['/Bjp_Manifesto_2019.pdf',],['/Aap_Manifesto_2019.pdf',]],