import gradio as gr from model import NeuralStyleTransfer import tensorflow as tf def model_fn( style, content, extractor="inception_v3", n_content_layers=3, n_style_layers=2, epochs=4, learning_rate=60.0, steps_per_epoch=100, style_weight=1e-2, ): model = NeuralStyleTransfer( style_image=style, content_image=content, extractor=extractor, n_content_layers=n_content_layers, n_style_layers=n_style_layers, ) return model.fit_style_transfer( epochs=10, learning_rate=80.0, steps_per_epoch=100, style_weight=1e-2, content_weight=1e-4, show_image=True, show_interval=90, var_weight=1e-12, terminal=False, ) def hugging_face(): demo = gr.Interface( fn=model_fn, inputs=[ "image", "image", gr.Dropdown( ["inception_v3", "vgg19", "resnet50", "mobilenet_v2"], label="extractor", default="inception_v3", info="Feature extractor to use.", ), gr.Slider( 1, 5, value=3, label="n_content_layers", info="Number of content layers to use.", ), gr.Slider( 1, 5, value=2, label="n_style_layers", info="Number of style layers to use.", ), gr.Slider( 2, 20, value=4, label="epochs", info="Number of epochs to train for." ), gr.Slider( 1, 100, value=60, label="learning_rate", info="Initial Learning rate." ), gr.Slider( 1, 100, value=100, label="steps_per_epoch", info="Number of steps per epoch.", ), gr.Slider( 1e-4, 1e-2, value=1e-2, label="style_weight", info="Weight of style loss.", ), gr.Slider( 1e-4, 1e-2, value=1e-4, label="content_weight", info="Weight of content loss.", ), gr.Slider( 1e-12, 1e-9, value=1e-12, label="var_weight", info="Weight of total variation loss.", ), ], outputs="image", ) return demo if __name__ == "__main__": demo = hugging_face() demo.launch( )