File size: 8,623 Bytes
1f8f1d1
 
 
 
 
 
 
280a2a5
1f8f1d1
 
 
 
 
280a2a5
 
 
 
 
 
 
 
 
 
 
 
1f8f1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280a2a5
1f8f1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280a2a5
1f8f1d1
 
 
 
 
 
 
 
280a2a5
 
 
1f8f1d1
280a2a5
1f8f1d1
 
 
 
 
 
 
 
 
 
 
280a2a5
1f8f1d1
 
 
 
 
 
 
 
280a2a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from keras import backend as K


class NeuralStyleTransfer:
    def __init__(self, style_image, content_image, extractor, n_style_layers=5, n_content_layers=5):
        # load the model
        if extractor == "inception_v3":
            self.feature_extractor = tf.keras.applications.InceptionV3(
                include_top=False, weights="imagenet"
            )
        elif extractor == "vgg19":
            self.feature_extractor = tf.keras.applications.VGG19(
                include_top=False, weights="imagenet"
            )
        elif extractor == "resnet50":
            self.feature_extractor = tf.keras.applications.ResNet50(
                include_top=False, weights="imagenet"
            )
        elif extractor == "mobilenet_v2":
            self.feature_extractor = tf.keras.applications.MobileNetV2(
                include_top=False, weights="imagenet"
            )
        elif isinstance(extractor, tf.keras.Model):
            self.feature_extractor = extractor
        else:
            raise Exception("Features Extractor not found")

        # freeze the model
        self.feature_extractor.trainable = False

        # define the style and content depth
        self.n_style_layers = n_style_layers
        self.n_content_layers = n_content_layers

        self.style_image = self._load_img(style_image)
        self.content_image = self._load_img(content_image)

    def tensor_to_image(self, tensor):
        """converts a tensor to an image"""
        tensor_shape = tf.shape(tensor)
        number_elem_shape = tf.shape(tensor_shape)
        if number_elem_shape > 3:
            assert tensor_shape[0] == 1
            tensor = tensor[0]
        return tf.keras.preprocessing.image.array_to_img(tensor)

    def _load_img(self, image):
        max_dim = 512

        image = tf.io.read_file(image)
        image = tf.image.decode_image(image)
        image = tf.image.convert_image_dtype(image, tf.float32)

        image = tf.image.convert_image_dtype(image, tf.float32)

        shape = tf.shape(image)[:-1]
        shape = tf.cast(tf.shape(image)[:-1], tf.float32)
        long_dim = max(shape)
        scale = max_dim / long_dim

        new_shape = tf.cast(shape * scale, tf.int32)

        image = tf.image.resize(image, new_shape)
        image = image[tf.newaxis, :]
        image = tf.image.convert_image_dtype(image, tf.uint8)

        return image

    def imshow(self, image, title=None):
        """displays an image with a corresponding title"""
        if len(image.shape) > 3:
            image = tf.squeeze(image, axis=0)

        plt.imshow(image)
        if title:
            plt.title(title)

    def show_images_with_objects(self, images, titles=[]):
        """displays a row of images with corresponding titles"""
        if len(images) != len(titles):
            return

        plt.figure(figsize=(20, 12))
        for idx, (image, title) in enumerate(zip(images, titles)):
            plt.subplot(1, len(images), idx + 1)
            plt.xticks([])
            plt.yticks([])
            self.imshow(image, title)

    def _preprocess_image(self, image):
        image = tf.cast(image, dtype=tf.float32)
        image = (image / 127.5) - 1.0

        return image

    def get_output_layers(self):
        # get all the layers which contain conv in their name
        all_layers = [
            layer.name
            for layer in self.feature_extractor.layers
            if "conv" in layer.name
        ]

        # define the style layers
        style_layers = all_layers[: self.n_style_layers]

        # define the content layers from second last layer
        content_layers = all_layers[-2: -self.n_content_layers - 2 : -1]

        content_and_style_layers = content_layers + style_layers

        return content_and_style_layers

    def build(self, layers_name):

        output_layers = [
            self.feature_extractor.get_layer(name).output for name in layers_name
        ]

        model = tf.keras.Model(self.feature_extractor.input, output_layers)

        self.feature_extractor = model

        return

    def _loss(self, target_img, features_img, type):
        """
        Calculates the loss of the style transfer

        target_img:
            the target image (style or content) features

        features_img:
            the generated image features (style or content)

        """

        loss = tf.reduce_mean(tf.square(features_img - target_img))

        if type == "content":
            return 0.5 * loss

        return loss

    def _gram_matrix(self, input_tensor):
        """
        Calculates the gram matrix and divides by the number of locations

        input_tensor:
            the output of the conv layer of the style image, shape = (batch_size, height, width, channels)

        """
        result = tf.linalg.einsum("bijc,bijd->bcd", input_tensor, input_tensor)
        input_shape = tf.shape(input_tensor)
        num_locations = tf.cast(input_shape[1] * input_shape[2], tf.float32)
        return result / (num_locations)

    def get_features(self, image, type):
        preprocess_image = self._preprocess_image(image)

        outputs = self.feature_extractor(preprocess_image)

        if type == "style":
            outputs = outputs[self.n_content_layers : ]
            features = [self._gram_matrix(style_output) for style_output in outputs]

        elif type == "content":
            features = outputs[ : self.n_content_layers]

        return features

    def _style_content_loss(
        self,
        style_targets,
        style_outputs,
        content_targets,
        content_outputs,
        style_weight,
        content_weight,
    ):
        """
        Calculates the total loss of the style transfer

        style_targets:
            the style features of the style image

        style_outputs:
            the style features of the generated image

        content_targets:
            the content features of the content image

        content_outputs:
            the content features of the generated image

        style_weight:
            the weight of the style loss

        content_weight:
            the weight of the content loss

        """

        # adding the loss of each layer
        style_loss = style_weight * tf.add_n(
            [
                self._loss(style_target, style_output, type="style")
                for style_target, style_output in zip(style_targets, style_outputs)
            ]
        )
        content_loss = content_weight * tf.add_n(
            [
                self._loss(content_target, content_output, type="content")
                for content_target, content_output in zip(
                    content_targets, content_outputs
                )
            ]
        )
        total_loss = style_loss + content_loss
        return total_loss, style_loss, content_loss

    def _grad_loss(
        self,
        generated_image,
        style_target,
        content_target,
        style_weight,
        content_weight,
        var_weight,
    ):
        """
        Calculates the gradients of the loss function with respect to the generated image

        generated_image:
            the generated image

        """

        with tf.GradientTape() as tape:
            style_features = self.get_features(generated_image, type="style")
            content_features = self.get_features(generated_image, type="content")
            loss, style_loss, content_loss = self._style_content_loss(
                style_target,
                style_features,
                content_target,
                content_features,
                style_weight,
                content_weight,
            )

            variational_loss= var_weight*tf.image.total_variation(generated_image)

            loss += variational_loss
        grads = tape.gradient(loss, generated_image)
        return grads, loss, [style_loss, content_loss, variational_loss]

    def _update_image_with_style(
        self,
        generated_image,
        style_target,
        content_target,
        style_weight,
        content_weight,
        optimizer,
        var_weight,
    ):
        grads, loss, loss_list = self._grad_loss(
            generated_image, style_target, content_target, style_weight, content_weight, var_weight
        )

        optimizer.apply_gradients([(grads, generated_image)])

        generated_image.assign(
            tf.clip_by_value(generated_image, clip_value_min=0.0, clip_value_max=255.0)
        )
        return loss_list