OpenPose / app.py
faiimea's picture
Update app.py
e5dfc32 verified
import cv2
import matplotlib.pyplot as plt
import copy
import numpy as np
import gradio as gr
import json # Import json module
from src import model
from src import util
from src.body import Body
from src.hand import Hand
# This function will generate and save the pose data as JSON
def save_json(candidate, subset, json_file_path='./pose_data.json'):
pose_data = {
'candidate': candidate.tolist(),
'subset': subset.tolist()
}
with open(json_file_path, 'w') as json_file:
json.dump(pose_data, json_file)
return json_file_path
def pose_estimation(test_image):
bgr_image_path = './test.png'
with open(bgr_image_path, 'wb') as bgr_file:
bgr_file.write(test_image)
# Load the estimation models
body_estimation = Body('model/body_pose_model.pth')
hand_estimation = Hand('model/hand_pose_model.pth')
oriImg = cv2.imread(bgr_image_path) # B,G,R order
# Perform pose estimation
candidate, subset = body_estimation(oriImg)
canvas = copy.deepcopy(oriImg)
canvas = util.draw_bodypose(canvas, candidate, subset)
hands_list = util.handDetect(candidate, subset, oriImg)
all_hand_peaks = []
for x, y, w, is_left in hands_list:
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
all_hand_peaks.append(peaks)
canvas = util.draw_handpose(canvas, all_hand_peaks)
plt.imshow(canvas[:, :, [2, 1, 0]])
plt.axis('off')
out_image_path = './out.jpg'
plt.savefig(out_image_path)
# Save JSON data and return its path
json_file_path = save_json(candidate, subset)
return out_image_path, json_file_path
# Convert the image path to bytes for Gradio to display
def convert_image_to_bytes(image_path):
with open(image_path, "rb") as image_file:
return image_file.read()
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Pose Estimation")
with gr.Row():
image = gr.File(label="Upload Image", type="binary")
output_image = gr.Image(label="Estimation Result")
output_json = gr.File(label="Download Pose Data as JSON", type="filepath") # Add JSON output
submit_button = gr.Button("Start Estimation")
# Run pose estimation and display results when the button is clicked
submit_button.click(
pose_estimation,
inputs=[image],
outputs=[output_image, output_json] # Update outputs
)
# Clear the results
clear_button = gr.Button("Clear")
def clear_outputs():
output_image.clear()
output_json.clear() # Clear JSON output as well
clear_button.click(
clear_outputs,
inputs=[],
outputs=[output_image, output_json] # Update outputs
)
if __name__ == "__main__":
demo.launch(debug=True)