ubuntu
commited on
Commit
·
fc0a115
1
Parent(s):
68e5f5a
try fix bugs
Browse files- __pycache__/genn_astar.cpython-39.pyc +0 -0
- __pycache__/one_hot.cpython-39.pyc +0 -0
- best_genn_AIDS700nef_gcn_astar.pt +0 -0
- genn_astar.py +190 -186
- media/ged_image_1.png +0 -0
- media/ged_image_2.png +0 -0
- media/ged_image_3.png +0 -0
- media/ged_image_4.png +0 -0
- media/ged_image_5.png +0 -0
__pycache__/genn_astar.cpython-39.pyc
ADDED
Binary file (4.78 kB). View file
|
|
__pycache__/one_hot.cpython-39.pyc
ADDED
Binary file (1.54 kB). View file
|
|
best_genn_AIDS700nef_gcn_astar.pt
DELETED
Binary file (45.4 kB)
|
|
genn_astar.py
CHANGED
@@ -1,187 +1,191 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import networkx as nx
|
4 |
-
import pygmtools as pygm
|
5 |
-
import torch
|
6 |
-
try:
|
7 |
-
from torch_geometric.data import Data
|
8 |
-
except:
|
9 |
-
os.system("pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
10 |
-
os.system("pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
11 |
-
os.system("pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
12 |
-
os.system("pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
13 |
-
from torch_geometric.data import Data
|
14 |
-
from one_hot import one_hot
|
15 |
-
from torch_geometric.transforms import OneHotDegree
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
import pygmtools as pygm
|
18 |
-
pygm.set_backend('pytorch')
|
19 |
-
|
20 |
-
|
21 |
-
######################################################
|
22 |
-
# Constant Variable #
|
23 |
-
######################################################
|
24 |
-
|
25 |
-
AIDS700NEF_TYPE = [
|
26 |
-
'O', 'S', 'C', 'N', 'Cl', 'Br', 'B', 'Si', 'Hg', 'I', 'Bi', 'P', 'F',
|
27 |
-
'Cu', 'Ho', 'Pd', 'Ru', 'Pt', 'Sn', 'Li', 'Ga', 'Tb', 'As', 'Co', 'Pb',
|
28 |
-
'Sb', 'Se', 'Ni', 'Te'
|
29 |
-
]
|
30 |
-
|
31 |
-
|
32 |
-
COLOR = [
|
33 |
-
'#FF69B4', # O - 热情的粉红色
|
34 |
-
'#00CED1', # S - 深蓝绿色
|
35 |
-
'#FFD700', # C - 金色
|
36 |
-
'#FFA500', # N - 橙色
|
37 |
-
'#FF6347', # Cl - 番茄红色
|
38 |
-
'#8B008B', # Br - 深洋红色
|
39 |
-
'#00FF7F', # B - 春天的绿色
|
40 |
-
'#40E0D0', # Si - 绿松石色
|
41 |
-
'#FF4500', # Hg - 橙红色
|
42 |
-
'#9932CC', # I - 深兰花紫色
|
43 |
-
'#9370DB', # Bi - 中紫色
|
44 |
-
'#FFA500', # P - 橙色
|
45 |
-
'#FFFF00', # F - 黄色
|
46 |
-
'#B8860B', # Cu - 深金色
|
47 |
-
'#7FFFD4', # Ho - 碧绿色
|
48 |
-
'#FFD700', # Pd - 金色
|
49 |
-
'#B22222', # Ru - 砖红色
|
50 |
-
'#E5E4E2', # Pt - 浅灰色
|
51 |
-
'#A9A9A9', # Sn - 深灰色
|
52 |
-
'#32CD32', # Li - 酸橙色
|
53 |
-
'#CD853F', # Ga - 秘鲁色
|
54 |
-
'#7FFFD4', # Tb - 碧绿色
|
55 |
-
'#8A2BE2', # As - 紫罗兰色
|
56 |
-
'#FFD700', # Co - 金色
|
57 |
-
'#808080', # Pb - 灰色
|
58 |
-
'#A9A9A9', # Sb - 深灰色
|
59 |
-
'#FA8072', # Se - 鲑鱼色
|
60 |
-
'#BEBEBE', # Ni - 浅灰色
|
61 |
-
'#800080' # Te - 紫色
|
62 |
-
]
|
63 |
-
|
64 |
-
|
65 |
-
######################################################
|
66 |
-
# Utils Func #
|
67 |
-
######################################################
|
68 |
-
|
69 |
-
def from_gexf(filename: str, node_types: list=None):
|
70 |
-
r"""
|
71 |
-
Read Data from GEXF file
|
72 |
-
"""
|
73 |
-
if not filename.endswith('.gexf'):
|
74 |
-
raise ValueError("File type error, 'from_gexf' function only supports GEXF files")
|
75 |
-
graph = nx.read_gexf(filename)
|
76 |
-
mapping = {name: j for j, name in enumerate(graph.nodes())}
|
77 |
-
graph = nx.relabel_nodes(graph, mapping)
|
78 |
-
edge_index = torch.from_numpy(np.array(graph.edges, dtype=np.int64).transpose())
|
79 |
-
x = None
|
80 |
-
labels = None
|
81 |
-
data = None
|
82 |
-
colors = None
|
83 |
-
if 'type' in graph.nodes(data=True)[0].keys():
|
84 |
-
labels = dict()
|
85 |
-
colors = list()
|
86 |
-
num_nodes = graph.number_of_nodes()
|
87 |
-
x = torch.zeros(num_nodes, dtype=torch.long)
|
88 |
-
node_types = AIDS700NEF_TYPE if node_types is None else node_types
|
89 |
-
for node, info in graph.nodes(data=True):
|
90 |
-
x[int(node)] = node_types.index(info['type'])
|
91 |
-
labels[int(node)] = str(int(node)) + info['type']
|
92 |
-
colors.append(COLOR[x[int(node)]])
|
93 |
-
x = one_hot(x, num_classes=len(node_types))
|
94 |
-
data = Data(x=x, edge_index=edge_index, edge_attr=None)
|
95 |
-
return graph, data, labels, colors
|
96 |
-
|
97 |
-
|
98 |
-
def draw(graph, colors, labels, filename, title, pos_type=None):
|
99 |
-
if pos_type is None:
|
100 |
-
pos = nx.kamada_kawai_layout(graph)
|
101 |
-
elif pos_type == "spring":
|
102 |
-
pos = nx.spring_layout(graph)
|
103 |
-
plt.figure()
|
104 |
-
plt.gca().set_title(title)
|
105 |
-
nx.draw(graph, pos, with_labels=True, node_color=colors, edge_color='gray', labels=labels)
|
106 |
-
plt.savefig(filename)
|
107 |
-
plt.clf()
|
108 |
-
|
109 |
-
|
110 |
-
######################################################
|
111 |
-
# GED UI #
|
112 |
-
######################################################
|
113 |
-
|
114 |
-
def astar(
|
115 |
-
g1_path: str,
|
116 |
-
g2_path: str,
|
117 |
-
output_path: str="examples",
|
118 |
-
filename: str="example",
|
119 |
-
device='cpu'
|
120 |
-
):
|
121 |
-
if not os.path.exists(output_path):
|
122 |
-
os.mkdir(output_path)
|
123 |
-
output_filename = os.path.join(output_path, filename) + "_{}.png"
|
124 |
-
|
125 |
-
# Load data
|
126 |
-
g1, d1, l1, c1 = from_gexf(g1_path)
|
127 |
-
g2, d2, l2, c2 = from_gexf(g2_path)
|
128 |
-
if len(c1) > len(c2):
|
129 |
-
graph1, data1, labels1, colors1 = g2, d2, l2, c2
|
130 |
-
graph2, data2, labels2, colors2 = g1, d1, l1, c1
|
131 |
-
else:
|
132 |
-
graph1, data1, labels1, colors1 = g1, d1, l1, c1
|
133 |
-
graph2, data2, labels2, colors2 = g2, d2, l2, c2
|
134 |
-
|
135 |
-
# Build Graph and Adj Matrix
|
136 |
-
data1 = OneHotDegree(max_degree=6)(data1)
|
137 |
-
data2 = OneHotDegree(max_degree=6)(data2)
|
138 |
-
feat1 = data1.x.to(device)
|
139 |
-
feat2 = data2.x.to(device)
|
140 |
-
A1 = torch.tensor(pygm.utils.from_networkx(graph1)).float().to(device)
|
141 |
-
A2 = torch.tensor(pygm.utils.from_networkx(graph2)).float().to(device)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
#
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
draw(graph1, colors1_2, labels1_2, output_filename.format(4), title, pos_type="spring")
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import networkx as nx
|
4 |
+
import pygmtools as pygm
|
5 |
+
import torch
|
6 |
+
try:
|
7 |
+
from torch_geometric.data import Data
|
8 |
+
except:
|
9 |
+
os.system("pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
10 |
+
os.system("pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
11 |
+
os.system("pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
12 |
+
os.system("pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
13 |
+
from torch_geometric.data import Data
|
14 |
+
from one_hot import one_hot
|
15 |
+
from torch_geometric.transforms import OneHotDegree
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import pygmtools as pygm
|
18 |
+
pygm.set_backend('pytorch')
|
19 |
+
|
20 |
+
|
21 |
+
######################################################
|
22 |
+
# Constant Variable #
|
23 |
+
######################################################
|
24 |
+
|
25 |
+
AIDS700NEF_TYPE = [
|
26 |
+
'O', 'S', 'C', 'N', 'Cl', 'Br', 'B', 'Si', 'Hg', 'I', 'Bi', 'P', 'F',
|
27 |
+
'Cu', 'Ho', 'Pd', 'Ru', 'Pt', 'Sn', 'Li', 'Ga', 'Tb', 'As', 'Co', 'Pb',
|
28 |
+
'Sb', 'Se', 'Ni', 'Te'
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
COLOR = [
|
33 |
+
'#FF69B4', # O - 热情的粉红色
|
34 |
+
'#00CED1', # S - 深蓝绿色
|
35 |
+
'#FFD700', # C - 金色
|
36 |
+
'#FFA500', # N - 橙色
|
37 |
+
'#FF6347', # Cl - 番茄红色
|
38 |
+
'#8B008B', # Br - 深洋红色
|
39 |
+
'#00FF7F', # B - 春天的绿色
|
40 |
+
'#40E0D0', # Si - 绿松石色
|
41 |
+
'#FF4500', # Hg - 橙红色
|
42 |
+
'#9932CC', # I - 深兰花紫色
|
43 |
+
'#9370DB', # Bi - 中紫色
|
44 |
+
'#FFA500', # P - 橙色
|
45 |
+
'#FFFF00', # F - 黄色
|
46 |
+
'#B8860B', # Cu - 深金色
|
47 |
+
'#7FFFD4', # Ho - 碧绿色
|
48 |
+
'#FFD700', # Pd - 金色
|
49 |
+
'#B22222', # Ru - 砖红色
|
50 |
+
'#E5E4E2', # Pt - 浅灰色
|
51 |
+
'#A9A9A9', # Sn - 深灰色
|
52 |
+
'#32CD32', # Li - 酸橙色
|
53 |
+
'#CD853F', # Ga - 秘鲁色
|
54 |
+
'#7FFFD4', # Tb - 碧绿色
|
55 |
+
'#8A2BE2', # As - 紫罗兰色
|
56 |
+
'#FFD700', # Co - 金色
|
57 |
+
'#808080', # Pb - 灰色
|
58 |
+
'#A9A9A9', # Sb - 深灰色
|
59 |
+
'#FA8072', # Se - 鲑鱼色
|
60 |
+
'#BEBEBE', # Ni - 浅灰色
|
61 |
+
'#800080' # Te - 紫色
|
62 |
+
]
|
63 |
+
|
64 |
+
|
65 |
+
######################################################
|
66 |
+
# Utils Func #
|
67 |
+
######################################################
|
68 |
+
|
69 |
+
def from_gexf(filename: str, node_types: list=None):
|
70 |
+
r"""
|
71 |
+
Read Data from GEXF file
|
72 |
+
"""
|
73 |
+
if not filename.endswith('.gexf'):
|
74 |
+
raise ValueError("File type error, 'from_gexf' function only supports GEXF files")
|
75 |
+
graph = nx.read_gexf(filename)
|
76 |
+
mapping = {name: j for j, name in enumerate(graph.nodes())}
|
77 |
+
graph = nx.relabel_nodes(graph, mapping)
|
78 |
+
edge_index = torch.from_numpy(np.array(graph.edges, dtype=np.int64).transpose())
|
79 |
+
x = None
|
80 |
+
labels = None
|
81 |
+
data = None
|
82 |
+
colors = None
|
83 |
+
if 'type' in graph.nodes(data=True)[0].keys():
|
84 |
+
labels = dict()
|
85 |
+
colors = list()
|
86 |
+
num_nodes = graph.number_of_nodes()
|
87 |
+
x = torch.zeros(num_nodes, dtype=torch.long)
|
88 |
+
node_types = AIDS700NEF_TYPE if node_types is None else node_types
|
89 |
+
for node, info in graph.nodes(data=True):
|
90 |
+
x[int(node)] = node_types.index(info['type'])
|
91 |
+
labels[int(node)] = str(int(node)) + info['type']
|
92 |
+
colors.append(COLOR[x[int(node)]])
|
93 |
+
x = one_hot(x, num_classes=len(node_types))
|
94 |
+
data = Data(x=x, edge_index=edge_index, edge_attr=None)
|
95 |
+
return graph, data, labels, colors
|
96 |
+
|
97 |
+
|
98 |
+
def draw(graph, colors, labels, filename, title, pos_type=None):
|
99 |
+
if pos_type is None:
|
100 |
+
pos = nx.kamada_kawai_layout(graph)
|
101 |
+
elif pos_type == "spring":
|
102 |
+
pos = nx.spring_layout(graph)
|
103 |
+
plt.figure()
|
104 |
+
plt.gca().set_title(title)
|
105 |
+
nx.draw(graph, pos, with_labels=True, node_color=colors, edge_color='gray', labels=labels)
|
106 |
+
plt.savefig(filename)
|
107 |
+
plt.clf()
|
108 |
+
|
109 |
+
|
110 |
+
######################################################
|
111 |
+
# GED UI #
|
112 |
+
######################################################
|
113 |
+
|
114 |
+
def astar(
|
115 |
+
g1_path: str,
|
116 |
+
g2_path: str,
|
117 |
+
output_path: str="examples",
|
118 |
+
filename: str="example",
|
119 |
+
device='cpu'
|
120 |
+
):
|
121 |
+
if not os.path.exists(output_path):
|
122 |
+
os.mkdir(output_path)
|
123 |
+
output_filename = os.path.join(output_path, filename) + "_{}.png"
|
124 |
+
|
125 |
+
# Load data
|
126 |
+
g1, d1, l1, c1 = from_gexf(g1_path)
|
127 |
+
g2, d2, l2, c2 = from_gexf(g2_path)
|
128 |
+
if len(c1) > len(c2):
|
129 |
+
graph1, data1, labels1, colors1 = g2, d2, l2, c2
|
130 |
+
graph2, data2, labels2, colors2 = g1, d1, l1, c1
|
131 |
+
else:
|
132 |
+
graph1, data1, labels1, colors1 = g1, d1, l1, c1
|
133 |
+
graph2, data2, labels2, colors2 = g2, d2, l2, c2
|
134 |
+
|
135 |
+
# Build Graph and Adj Matrix
|
136 |
+
data1 = OneHotDegree(max_degree=6)(data1)
|
137 |
+
data2 = OneHotDegree(max_degree=6)(data2)
|
138 |
+
feat1 = data1.x.to(device)
|
139 |
+
feat2 = data2.x.to(device)
|
140 |
+
A1 = torch.tensor(pygm.utils.from_networkx(graph1)).float().to(device)
|
141 |
+
A2 = torch.tensor(pygm.utils.from_networkx(graph2)).float().to(device)
|
142 |
+
|
143 |
+
import site
|
144 |
+
site_path = site.getsitepackages()[0]
|
145 |
+
pygm_path = os.path.join(site_path, "pygmtools")
|
146 |
+
print(os.listdir(pygm_path))
|
147 |
+
# Caculate the ged
|
148 |
+
x_pred = pygm.genn_astar(feat1, feat2, A1, A2, return_network=False)
|
149 |
+
|
150 |
+
# Plot
|
151 |
+
draw(graph1, colors1, labels1, output_filename.format(1), "Graph1")
|
152 |
+
draw(graph2, colors2, labels2, output_filename.format(5), f"Graph2")
|
153 |
+
|
154 |
+
# Match Process
|
155 |
+
total_cost = 0
|
156 |
+
labels1_1 = labels1.copy()
|
157 |
+
for i in range(x_pred.shape[0]):
|
158 |
+
target = torch.nonzero(x_pred[i])[0].item()
|
159 |
+
labels1_1[i] = labels1[i].replace(str(i), str(target))
|
160 |
+
title = "Node Match"
|
161 |
+
draw(graph1, colors1, labels1_1, output_filename.format(2), title)
|
162 |
+
|
163 |
+
# Node Change
|
164 |
+
cur_cost = 0
|
165 |
+
labels1_2 = labels1.copy()
|
166 |
+
colors1_2 = colors1.copy()
|
167 |
+
target2ori = dict()
|
168 |
+
targets = list()
|
169 |
+
for i in range(x_pred.shape[0]):
|
170 |
+
target = torch.nonzero(x_pred[i])[0].item()
|
171 |
+
if labels1_1[i] != labels2[target]:
|
172 |
+
cur_cost += 1
|
173 |
+
labels1_2[i] = labels2[target]
|
174 |
+
colors1_2[i] = colors2[target]
|
175 |
+
target2ori[target] = i
|
176 |
+
targets.append(target)
|
177 |
+
total_cost += cur_cost
|
178 |
+
title = f"Node Change"
|
179 |
+
draw(graph1, colors1_2, labels1_2, output_filename.format(3), title)
|
180 |
+
|
181 |
+
# Edge Change
|
182 |
+
leave_cost = np.array(graph2).shape[0] - np.array(graph1).shape[0]
|
183 |
+
leave_cost += graph2.number_of_nodes() - graph1.number_of_nodes()
|
184 |
+
e2 = np.array(graph2.edges)
|
185 |
+
new_edges = list()
|
186 |
+
for edge in e2:
|
187 |
+
if edge[0] in targets and edge[1] in targets:
|
188 |
+
new_edges.append([target2ori[edge[0]], target2ori[edge[1]]])
|
189 |
+
graph1.edges = nx.Graph(new_edges).edges
|
190 |
+
title = f"Edge Change"
|
191 |
draw(graph1, colors1_2, labels1_2, output_filename.format(4), title, pos_type="spring")
|
media/ged_image_1.png
CHANGED
media/ged_image_2.png
CHANGED
media/ged_image_3.png
CHANGED
media/ged_image_4.png
CHANGED
media/ged_image_5.png
CHANGED