ubuntu
commited on
Commit
·
6b33608
1
Parent(s):
4019bc8
Initial Commit
Browse files- app.py +180 -0
- genn_astar.py +187 -0
- one_hot.py +38 -0
- requirements.txt +8 -0
- src/ged_default.png +0 -0
- src/ged_image_1.png +0 -0
- src/ged_image_2.png +0 -0
- src/ged_image_3.png +0 -0
- src/ged_image_4.png +0 -0
- src/ged_image_5.png +0 -0
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import shutil
|
3 |
+
import gradio as gr
|
4 |
+
from genn_astar import astar
|
5 |
+
|
6 |
+
|
7 |
+
GED_IMG_DEFAULT_PATH = "src/ged_default.png"
|
8 |
+
GED_SOLUTION_1_PATH = "src/ged_image_1.png"
|
9 |
+
GED_SOLUTION_2_PATH = "src/ged_image_2.png"
|
10 |
+
GED_SOLUTION_3_PATH = "src/ged_image_3.png"
|
11 |
+
GED_SOLUTION_4_PATH = "src/ged_image_4.png"
|
12 |
+
GED_SOLUTION_5_PATH = "src/ged_image_5.png"
|
13 |
+
|
14 |
+
|
15 |
+
def _handle_ged_solve(
|
16 |
+
gexf_1_path: str,
|
17 |
+
gexf_2_path: str
|
18 |
+
):
|
19 |
+
if gexf_1_path is None:
|
20 |
+
raise gr.Error("Please upload file completely!")
|
21 |
+
if gexf_2_path is None:
|
22 |
+
raise gr.Error("Please upload file completely!")
|
23 |
+
|
24 |
+
start_time = time.time()
|
25 |
+
astar(
|
26 |
+
g1_path=gexf_1_path,
|
27 |
+
g2_path=gexf_2_path,
|
28 |
+
output_path="src",
|
29 |
+
filename="ged_image"
|
30 |
+
)
|
31 |
+
solved_time = time.time() - start_time
|
32 |
+
|
33 |
+
message = "Successfully solve the GED problem, using time ({:.3f}s).".format(solved_time)
|
34 |
+
|
35 |
+
return message, GED_SOLUTION_1_PATH, GED_SOLUTION_2_PATH, GED_SOLUTION_3_PATH, \
|
36 |
+
GED_SOLUTION_4_PATH, GED_SOLUTION_5_PATH
|
37 |
+
|
38 |
+
|
39 |
+
def handle_ged_solve(
|
40 |
+
gexf_1_path: str,
|
41 |
+
gexf_2_path: str
|
42 |
+
):
|
43 |
+
try:
|
44 |
+
message = _handle_ged_solve(
|
45 |
+
gexf_1_path=gexf_1_path,
|
46 |
+
gexf_2_path=gexf_2_path
|
47 |
+
)
|
48 |
+
return message
|
49 |
+
except Exception as e:
|
50 |
+
message = str(e)
|
51 |
+
return message, GED_SOLUTION_1_PATH, GED_SOLUTION_2_PATH, GED_SOLUTION_3_PATH, \
|
52 |
+
GED_SOLUTION_4_PATH, GED_SOLUTION_5_PATH
|
53 |
+
|
54 |
+
|
55 |
+
def handle_ged_clear():
|
56 |
+
shutil.copy(
|
57 |
+
src=GED_IMG_DEFAULT_PATH,
|
58 |
+
dst=GED_SOLUTION_1_PATH
|
59 |
+
)
|
60 |
+
shutil.copy(
|
61 |
+
src=GED_IMG_DEFAULT_PATH,
|
62 |
+
dst=GED_SOLUTION_2_PATH
|
63 |
+
)
|
64 |
+
shutil.copy(
|
65 |
+
src=GED_IMG_DEFAULT_PATH,
|
66 |
+
dst=GED_SOLUTION_3_PATH
|
67 |
+
)
|
68 |
+
shutil.copy(
|
69 |
+
src=GED_IMG_DEFAULT_PATH,
|
70 |
+
dst=GED_SOLUTION_4_PATH
|
71 |
+
)
|
72 |
+
shutil.copy(
|
73 |
+
src=GED_IMG_DEFAULT_PATH,
|
74 |
+
dst=GED_SOLUTION_5_PATH
|
75 |
+
)
|
76 |
+
|
77 |
+
message = "successfully clear the files!"
|
78 |
+
return message, GED_SOLUTION_1_PATH, GED_SOLUTION_2_PATH, GED_SOLUTION_3_PATH, \
|
79 |
+
GED_SOLUTION_4_PATH, GED_SOLUTION_5_PATH
|
80 |
+
|
81 |
+
|
82 |
+
def convert_image_path_to_bytes(image_path):
|
83 |
+
with open(image_path, "rb") as f:
|
84 |
+
image_bytes = f.read()
|
85 |
+
return image_bytes
|
86 |
+
|
87 |
+
|
88 |
+
with gr.Blocks() as ged_page:
|
89 |
+
|
90 |
+
gr.Markdown(
|
91 |
+
'''
|
92 |
+
This space displays the solution to the Graph Edit Distance problem.
|
93 |
+
## How to use this Space?
|
94 |
+
- Upload two '.gexf' files.
|
95 |
+
- The images of the GED problem and solution will be shown after you click the solve button.
|
96 |
+
- Click the 'clear' button to clear all the files.
|
97 |
+
## Examples
|
98 |
+
- You can get the test examples from our [GED Dataset Repo.](https://huggingface.co/datasets/SJTU-TES/Graph-Edit-Distance)
|
99 |
+
'''
|
100 |
+
)
|
101 |
+
|
102 |
+
with gr.Row(variant="panel"):
|
103 |
+
with gr.Column(scale=2):
|
104 |
+
with gr.Row():
|
105 |
+
ged_img_1 = gr.File(
|
106 |
+
label="Upload .gexf File",
|
107 |
+
file_types=[".gexf"],
|
108 |
+
min_width=40,
|
109 |
+
)
|
110 |
+
ged_img_2 = gr.File(
|
111 |
+
label="Upload .gexf File",
|
112 |
+
file_types=[".gexf"],
|
113 |
+
min_width=40,
|
114 |
+
)
|
115 |
+
with gr.Column(scale=2):
|
116 |
+
info = gr.Textbox(
|
117 |
+
value="",
|
118 |
+
label="Log",
|
119 |
+
scale=4,
|
120 |
+
)
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column(scale=1, min_width=100):
|
123 |
+
solve_button = gr.Button(
|
124 |
+
value="Solve",
|
125 |
+
variant="primary",
|
126 |
+
scale=1
|
127 |
+
)
|
128 |
+
with gr.Column(scale=1, min_width=100):
|
129 |
+
clear_button = gr.Button(
|
130 |
+
"Clear",
|
131 |
+
variant="secondary",
|
132 |
+
scale=1
|
133 |
+
)
|
134 |
+
with gr.Column(scale=8):
|
135 |
+
pass
|
136 |
+
with gr.Row(variant="panel"):
|
137 |
+
ged_solution_1 = gr.Image(
|
138 |
+
value=GED_SOLUTION_1_PATH,
|
139 |
+
type="filepath",
|
140 |
+
label="1"
|
141 |
+
)
|
142 |
+
ged_solution_2 = gr.Image(
|
143 |
+
value=GED_SOLUTION_2_PATH,
|
144 |
+
type="filepath",
|
145 |
+
label="2"
|
146 |
+
)
|
147 |
+
ged_solution_3 = gr.Image(
|
148 |
+
value=GED_SOLUTION_3_PATH,
|
149 |
+
type="filepath",
|
150 |
+
label="3"
|
151 |
+
)
|
152 |
+
ged_solution_4 = gr.Image(
|
153 |
+
value=GED_SOLUTION_4_PATH,
|
154 |
+
type="filepath",
|
155 |
+
label="4"
|
156 |
+
)
|
157 |
+
ged_solution_5 = gr.Image(
|
158 |
+
value=GED_SOLUTION_5_PATH,
|
159 |
+
type="filepath",
|
160 |
+
label="5"
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
solve_button.click(
|
165 |
+
handle_ged_solve,
|
166 |
+
[ged_img_1, ged_img_2],
|
167 |
+
outputs=[info, ged_solution_1, ged_solution_2,
|
168 |
+
ged_solution_3, ged_solution_4, ged_solution_5]
|
169 |
+
)
|
170 |
+
|
171 |
+
clear_button.click(
|
172 |
+
handle_ged_clear,
|
173 |
+
inputs=None,
|
174 |
+
outputs=[info, ged_solution_1, ged_solution_2,
|
175 |
+
ged_solution_3, ged_solution_4, ged_solution_5]
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
if __name__ == "__main__":
|
180 |
+
ged_page.launch(debug = True)
|
genn_astar.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import networkx as nx
|
4 |
+
import pygmtools as pygm
|
5 |
+
import torch
|
6 |
+
try:
|
7 |
+
from torch_geometric.data import Data
|
8 |
+
except:
|
9 |
+
os.system("pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
10 |
+
os.system("pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
11 |
+
os.system("pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
12 |
+
os.system("pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-2.0.0%2Bcpu.html")
|
13 |
+
from torch_geometric.data import Data
|
14 |
+
from one_hot import one_hot
|
15 |
+
from torch_geometric.transforms import OneHotDegree
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import pygmtools as pygm
|
18 |
+
pygm.set_backend('pytorch')
|
19 |
+
|
20 |
+
|
21 |
+
######################################################
|
22 |
+
# Constant Variable #
|
23 |
+
######################################################
|
24 |
+
|
25 |
+
AIDS700NEF_TYPE = [
|
26 |
+
'O', 'S', 'C', 'N', 'Cl', 'Br', 'B', 'Si', 'Hg', 'I', 'Bi', 'P', 'F',
|
27 |
+
'Cu', 'Ho', 'Pd', 'Ru', 'Pt', 'Sn', 'Li', 'Ga', 'Tb', 'As', 'Co', 'Pb',
|
28 |
+
'Sb', 'Se', 'Ni', 'Te'
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
COLOR = [
|
33 |
+
'#FF69B4', # O - 热情的粉红色
|
34 |
+
'#00CED1', # S - 深蓝绿色
|
35 |
+
'#FFD700', # C - 金色
|
36 |
+
'#FFA500', # N - 橙色
|
37 |
+
'#FF6347', # Cl - 番茄红色
|
38 |
+
'#8B008B', # Br - 深洋红色
|
39 |
+
'#00FF7F', # B - 春天的绿色
|
40 |
+
'#40E0D0', # Si - 绿松石色
|
41 |
+
'#FF4500', # Hg - 橙红色
|
42 |
+
'#9932CC', # I - 深兰花紫色
|
43 |
+
'#9370DB', # Bi - 中紫色
|
44 |
+
'#FFA500', # P - 橙色
|
45 |
+
'#FFFF00', # F - 黄色
|
46 |
+
'#B8860B', # Cu - 深金色
|
47 |
+
'#7FFFD4', # Ho - 碧绿色
|
48 |
+
'#FFD700', # Pd - 金色
|
49 |
+
'#B22222', # Ru - 砖红色
|
50 |
+
'#E5E4E2', # Pt - 浅灰色
|
51 |
+
'#A9A9A9', # Sn - 深灰色
|
52 |
+
'#32CD32', # Li - 酸橙色
|
53 |
+
'#CD853F', # Ga - 秘鲁色
|
54 |
+
'#7FFFD4', # Tb - 碧绿色
|
55 |
+
'#8A2BE2', # As - 紫罗兰色
|
56 |
+
'#FFD700', # Co - 金色
|
57 |
+
'#808080', # Pb - 灰色
|
58 |
+
'#A9A9A9', # Sb - 深灰色
|
59 |
+
'#FA8072', # Se - 鲑鱼色
|
60 |
+
'#BEBEBE', # Ni - 浅灰色
|
61 |
+
'#800080' # Te - 紫色
|
62 |
+
]
|
63 |
+
|
64 |
+
|
65 |
+
######################################################
|
66 |
+
# Utils Func #
|
67 |
+
######################################################
|
68 |
+
|
69 |
+
def from_gexf(filename: str, node_types: list=None):
|
70 |
+
r"""
|
71 |
+
Read Data from GEXF file
|
72 |
+
"""
|
73 |
+
if not filename.endswith('.gexf'):
|
74 |
+
raise ValueError("File type error, 'from_gexf' function only supports GEXF files")
|
75 |
+
graph = nx.read_gexf(filename)
|
76 |
+
mapping = {name: j for j, name in enumerate(graph.nodes())}
|
77 |
+
graph = nx.relabel_nodes(graph, mapping)
|
78 |
+
edge_index = torch.from_numpy(np.array(graph.edges, dtype=np.int64).transpose())
|
79 |
+
x = None
|
80 |
+
labels = None
|
81 |
+
data = None
|
82 |
+
colors = None
|
83 |
+
if 'type' in graph.nodes(data=True)[0].keys():
|
84 |
+
labels = dict()
|
85 |
+
colors = list()
|
86 |
+
num_nodes = graph.number_of_nodes()
|
87 |
+
x = torch.zeros(num_nodes, dtype=torch.long)
|
88 |
+
node_types = AIDS700NEF_TYPE if node_types is None else node_types
|
89 |
+
for node, info in graph.nodes(data=True):
|
90 |
+
x[int(node)] = node_types.index(info['type'])
|
91 |
+
labels[int(node)] = str(int(node)) + info['type']
|
92 |
+
colors.append(COLOR[x[int(node)]])
|
93 |
+
x = one_hot(x, num_classes=len(node_types))
|
94 |
+
data = Data(x=x, edge_index=edge_index, edge_attr=None)
|
95 |
+
return graph, data, labels, colors
|
96 |
+
|
97 |
+
|
98 |
+
def draw(graph, colors, labels, filename, title, pos_type=None):
|
99 |
+
if pos_type is None:
|
100 |
+
pos = nx.kamada_kawai_layout(graph)
|
101 |
+
elif pos_type == "spring":
|
102 |
+
pos = nx.spring_layout(graph)
|
103 |
+
plt.figure()
|
104 |
+
plt.gca().set_title(title)
|
105 |
+
nx.draw(graph, pos, with_labels=True, node_color=colors, edge_color='gray', labels=labels)
|
106 |
+
plt.savefig(filename)
|
107 |
+
plt.clf()
|
108 |
+
|
109 |
+
|
110 |
+
######################################################
|
111 |
+
# GED UI #
|
112 |
+
######################################################
|
113 |
+
|
114 |
+
def astar(
|
115 |
+
g1_path: str,
|
116 |
+
g2_path: str,
|
117 |
+
output_path: str="examples",
|
118 |
+
filename: str="example",
|
119 |
+
device='cpu'
|
120 |
+
):
|
121 |
+
if not os.path.exists(output_path):
|
122 |
+
os.mkdir(output_path)
|
123 |
+
output_filename = os.path.join(output_path, filename) + "_{}.png"
|
124 |
+
|
125 |
+
# Load data
|
126 |
+
g1, d1, l1, c1 = from_gexf(g1_path)
|
127 |
+
g2, d2, l2, c2 = from_gexf(g2_path)
|
128 |
+
if len(c1) > len(c2):
|
129 |
+
graph1, data1, labels1, colors1 = g2, d2, l2, c2
|
130 |
+
graph2, data2, labels2, colors2 = g1, d1, l1, c1
|
131 |
+
else:
|
132 |
+
graph1, data1, labels1, colors1 = g1, d1, l1, c1
|
133 |
+
graph2, data2, labels2, colors2 = g2, d2, l2, c2
|
134 |
+
|
135 |
+
# Build Graph and Adj Matrix
|
136 |
+
data1 = OneHotDegree(max_degree=6)(data1)
|
137 |
+
data2 = OneHotDegree(max_degree=6)(data2)
|
138 |
+
feat1 = data1.x.to(device)
|
139 |
+
feat2 = data2.x.to(device)
|
140 |
+
A1 = torch.tensor(pygm.utils.from_networkx(graph1)).float().to(device)
|
141 |
+
A2 = torch.tensor(pygm.utils.from_networkx(graph2)).float().to(device)
|
142 |
+
|
143 |
+
# Caculate the ged
|
144 |
+
x_pred = pygm.genn_astar(feat1, feat2, A1, A2, return_network=False)
|
145 |
+
|
146 |
+
# Plot
|
147 |
+
draw(graph1, colors1, labels1, output_filename.format(1), "Graph1")
|
148 |
+
draw(graph2, colors2, labels2, output_filename.format(5), f"Graph2")
|
149 |
+
|
150 |
+
# Match Process
|
151 |
+
total_cost = 0
|
152 |
+
labels1_1 = labels1.copy()
|
153 |
+
for i in range(x_pred.shape[0]):
|
154 |
+
target = torch.nonzero(x_pred[i])[0].item()
|
155 |
+
labels1_1[i] = labels1[i].replace(str(i), str(target))
|
156 |
+
title = "Node Match"
|
157 |
+
draw(graph1, colors1, labels1_1, output_filename.format(2), title)
|
158 |
+
|
159 |
+
# Node Change
|
160 |
+
cur_cost = 0
|
161 |
+
labels1_2 = labels1.copy()
|
162 |
+
colors1_2 = colors1.copy()
|
163 |
+
target2ori = dict()
|
164 |
+
targets = list()
|
165 |
+
for i in range(x_pred.shape[0]):
|
166 |
+
target = torch.nonzero(x_pred[i])[0].item()
|
167 |
+
if labels1_1[i] != labels2[target]:
|
168 |
+
cur_cost += 1
|
169 |
+
labels1_2[i] = labels2[target]
|
170 |
+
colors1_2[i] = colors2[target]
|
171 |
+
target2ori[target] = i
|
172 |
+
targets.append(target)
|
173 |
+
total_cost += cur_cost
|
174 |
+
title = f"Node Change"
|
175 |
+
draw(graph1, colors1_2, labels1_2, output_filename.format(3), title)
|
176 |
+
|
177 |
+
# Edge Change
|
178 |
+
leave_cost = np.array(graph2).shape[0] - np.array(graph1).shape[0]
|
179 |
+
leave_cost += graph2.number_of_nodes() - graph1.number_of_nodes()
|
180 |
+
e2 = np.array(graph2.edges)
|
181 |
+
new_edges = list()
|
182 |
+
for edge in e2:
|
183 |
+
if edge[0] in targets and edge[1] in targets:
|
184 |
+
new_edges.append([target2ori[edge[0]], target2ori[edge[1]]])
|
185 |
+
graph1.edges = nx.Graph(new_edges).edges
|
186 |
+
title = f"Edge Change"
|
187 |
+
draw(graph1, colors1_2, labels1_2, output_filename.format(4), title, pos_type="spring")
|
one_hot.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
|
7 |
+
def one_hot(
|
8 |
+
index: Tensor,
|
9 |
+
num_classes: Optional[int] = None,
|
10 |
+
dtype: Optional[torch.dtype] = None,
|
11 |
+
) -> Tensor:
|
12 |
+
r"""Taskes a one-dimensional :obj:`index` tensor and returns a one-hot
|
13 |
+
encoded representation of it with shape :obj:`[*, num_classes]` that has
|
14 |
+
zeros everywhere except where the index of last dimension matches the
|
15 |
+
corresponding value of the input tensor, in which case it will be :obj:`1`.
|
16 |
+
|
17 |
+
.. note::
|
18 |
+
This is a more memory-efficient version of
|
19 |
+
:meth:`torch.nn.functional.one_hot` as you can customize the output
|
20 |
+
:obj:`dtype`.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
index (torch.Tensor): The one-dimensional input tensor.
|
24 |
+
num_classes (int, optional): The total number of classes. If set to
|
25 |
+
:obj:`None`, the number of classes will be inferred as one greater
|
26 |
+
than the largest class value in the input tensor.
|
27 |
+
(default: :obj:`None`)
|
28 |
+
dtype (torch.dtype, optional): The :obj:`dtype` of the output tensor.
|
29 |
+
"""
|
30 |
+
if index.dim() != 1:
|
31 |
+
raise ValueError("'index' tensor needs to be one-dimensional")
|
32 |
+
|
33 |
+
if num_classes is None:
|
34 |
+
num_classes = int(index.max()) + 1
|
35 |
+
|
36 |
+
out = torch.zeros((index.size(0), num_classes), dtype=dtype,
|
37 |
+
device=index.device)
|
38 |
+
return out.scatter_(1, index.unsqueeze(1), 1)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pygmtools==0.4.3
|
3 |
+
matplotlib
|
4 |
+
torch==2.0.0
|
5 |
+
torchvision==0.15.1
|
6 |
+
scikit-learn
|
7 |
+
torch_geometric==2.0.0
|
8 |
+
networkx==2.8.8
|
src/ged_default.png
ADDED
src/ged_image_1.png
ADDED
src/ged_image_2.png
ADDED
src/ged_image_3.png
ADDED
src/ged_image_4.png
ADDED
src/ged_image_5.png
ADDED