Spaces:
Running
Running
Upload pose_estimation.py
Browse files- src/pose_estimation.py +266 -0
src/pose_estimation.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
IMG_SIZE = (288, 384)
|
7 |
+
MEAN = np.array([0.485, 0.456, 0.406])
|
8 |
+
STD = np.array([0.229, 0.224, 0.225])
|
9 |
+
|
10 |
+
KPS = (
|
11 |
+
"Head",
|
12 |
+
"Neck",
|
13 |
+
"Right Shoulder",
|
14 |
+
"Right Arm",
|
15 |
+
"Right Hand",
|
16 |
+
"Left Shoulder",
|
17 |
+
"Left Arm",
|
18 |
+
"Left Hand",
|
19 |
+
"Spine",
|
20 |
+
"Hips",
|
21 |
+
"Right Upper Leg",
|
22 |
+
"Right Leg",
|
23 |
+
"Right Foot",
|
24 |
+
"Left Upper Leg",
|
25 |
+
"Left Leg",
|
26 |
+
"Left Foot",
|
27 |
+
"Left Toe",
|
28 |
+
"Right Toe",
|
29 |
+
)
|
30 |
+
|
31 |
+
SKELETON = (
|
32 |
+
(0, 1),
|
33 |
+
(1, 8),
|
34 |
+
(8, 9),
|
35 |
+
(9, 10),
|
36 |
+
(9, 13),
|
37 |
+
(10, 11),
|
38 |
+
(11, 12),
|
39 |
+
(13, 14),
|
40 |
+
(14, 15),
|
41 |
+
(1, 2),
|
42 |
+
(2, 3),
|
43 |
+
(3, 4),
|
44 |
+
(1, 5),
|
45 |
+
(5, 6),
|
46 |
+
(6, 7),
|
47 |
+
(15, 16),
|
48 |
+
(12, 17),
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
OPENPOSE_TO_GESTURE = (
|
53 |
+
0, # 0 Head\n",
|
54 |
+
1, # Neck\n",
|
55 |
+
2, # 2 Right Shoulder\n",
|
56 |
+
3, # Right Arm\n",
|
57 |
+
4, # 4 Right Hand\n",
|
58 |
+
5, # Left Shoulder\n",
|
59 |
+
6, # 6 Left Arm\n",
|
60 |
+
7, # Left Hand\n",
|
61 |
+
9, # 8 Hips\n",
|
62 |
+
10, # Right Upper Leg\n",
|
63 |
+
11, # 10Right Leg\n",
|
64 |
+
12, # Right Foot\n",
|
65 |
+
13, # 12Left Upper Leg\n",
|
66 |
+
14, # Left Leg\n",
|
67 |
+
15, # 14Left Foot\n",
|
68 |
+
-1, # \n",
|
69 |
+
-1, # 16\n",
|
70 |
+
-1, # \n",
|
71 |
+
-1, # 18\n",
|
72 |
+
16, # Left Toe\n",
|
73 |
+
-1, # 20\n",
|
74 |
+
-1, # \n",
|
75 |
+
17, # 22Right Toe\n",
|
76 |
+
-1, # \n",
|
77 |
+
-1, # 24\n",
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
def transform(img):
|
82 |
+
img = img.astype("float32") / 255
|
83 |
+
|
84 |
+
img = (img - MEAN) / STD
|
85 |
+
|
86 |
+
return np.transpose(img, axes=(2, 0, 1))
|
87 |
+
|
88 |
+
|
89 |
+
def get_affine_transform(
|
90 |
+
center,
|
91 |
+
scale,
|
92 |
+
rot,
|
93 |
+
output_size,
|
94 |
+
shift=np.array([0, 0], dtype=np.float32),
|
95 |
+
inv=0,
|
96 |
+
pixel_std=200,
|
97 |
+
):
|
98 |
+
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
|
99 |
+
scale = np.array([scale, scale])
|
100 |
+
|
101 |
+
scale_tmp = scale * pixel_std
|
102 |
+
src_w = scale_tmp[0]
|
103 |
+
dst_w = output_size[0]
|
104 |
+
dst_h = output_size[1]
|
105 |
+
|
106 |
+
rot_rad = np.pi * rot / 180
|
107 |
+
src_dir = get_dir([0, src_w * -0.5], rot_rad)
|
108 |
+
dst_dir = np.array([0, dst_w * -0.5], np.float32)
|
109 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
110 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
111 |
+
src[0, :] = center + scale_tmp * shift
|
112 |
+
src[1, :] = center + src_dir + scale_tmp * shift
|
113 |
+
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
114 |
+
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
115 |
+
|
116 |
+
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
|
117 |
+
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
|
118 |
+
|
119 |
+
if inv:
|
120 |
+
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
121 |
+
else:
|
122 |
+
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
123 |
+
|
124 |
+
return trans
|
125 |
+
|
126 |
+
|
127 |
+
def get_3rd_point(a, b):
|
128 |
+
direct = a - b
|
129 |
+
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
|
130 |
+
|
131 |
+
|
132 |
+
def get_dir(src_point, rot_rad):
|
133 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
134 |
+
|
135 |
+
src_result = [0, 0]
|
136 |
+
src_result[0] = src_point[0] * cs - src_point[1] * sn
|
137 |
+
src_result[1] = src_point[0] * sn + src_point[1] * cs
|
138 |
+
|
139 |
+
return src_result
|
140 |
+
|
141 |
+
|
142 |
+
def process_image(path, input_img_size, pixel_std=200):
|
143 |
+
data_numpy = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
|
144 |
+
# BUG HERE. Must be uncommented
|
145 |
+
# data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB)
|
146 |
+
|
147 |
+
h, w = data_numpy.shape[:2]
|
148 |
+
c = np.array([w / 2, h / 2], dtype=np.float32)
|
149 |
+
|
150 |
+
aspect_ratio = input_img_size[0] / input_img_size[1]
|
151 |
+
if w > aspect_ratio * h:
|
152 |
+
h = w * 1.0 / aspect_ratio
|
153 |
+
elif w < aspect_ratio * h:
|
154 |
+
w = h * aspect_ratio
|
155 |
+
|
156 |
+
s = np.array([w / pixel_std, h / pixel_std], dtype=np.float32) * 1.25
|
157 |
+
r = 0
|
158 |
+
trans = get_affine_transform(c, s, r, input_img_size, pixel_std=pixel_std)
|
159 |
+
input = cv2.warpAffine(data_numpy, trans, input_img_size, flags=cv2.INTER_LINEAR)
|
160 |
+
|
161 |
+
input = transform(input)
|
162 |
+
|
163 |
+
return input, data_numpy, c, s
|
164 |
+
|
165 |
+
|
166 |
+
def get_final_preds(batch_heatmaps, center, scale, post_process=False):
|
167 |
+
coords, maxvals = get_max_preds(batch_heatmaps)
|
168 |
+
|
169 |
+
heatmap_height = batch_heatmaps.shape[2]
|
170 |
+
heatmap_width = batch_heatmaps.shape[3]
|
171 |
+
|
172 |
+
# post-processing
|
173 |
+
if post_process:
|
174 |
+
for n in range(coords.shape[0]):
|
175 |
+
for p in range(coords.shape[1]):
|
176 |
+
hm = batch_heatmaps[n][p]
|
177 |
+
px = int(math.floor(coords[n][p][0] + 0.5))
|
178 |
+
py = int(math.floor(coords[n][p][1] + 0.5))
|
179 |
+
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
|
180 |
+
diff = np.array(
|
181 |
+
[
|
182 |
+
hm[py][px + 1] - hm[py][px - 1],
|
183 |
+
hm[py + 1][px] - hm[py - 1][px],
|
184 |
+
]
|
185 |
+
)
|
186 |
+
coords[n][p] += np.sign(diff) * 0.25
|
187 |
+
|
188 |
+
preds = coords.copy()
|
189 |
+
|
190 |
+
# Transform back
|
191 |
+
for i in range(coords.shape[0]):
|
192 |
+
preds[i] = transform_preds(
|
193 |
+
coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
|
194 |
+
)
|
195 |
+
|
196 |
+
return preds, maxvals
|
197 |
+
|
198 |
+
|
199 |
+
def transform_preds(coords, center, scale, output_size):
|
200 |
+
target_coords = np.zeros(coords.shape)
|
201 |
+
trans = get_affine_transform(center, scale, 0, output_size, inv=1)
|
202 |
+
for p in range(coords.shape[0]):
|
203 |
+
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
|
204 |
+
return target_coords
|
205 |
+
|
206 |
+
|
207 |
+
def affine_transform(pt, t):
|
208 |
+
new_pt = np.array([pt[0], pt[1], 1.0]).T
|
209 |
+
new_pt = np.dot(t, new_pt)
|
210 |
+
return new_pt[:2]
|
211 |
+
|
212 |
+
|
213 |
+
def get_max_preds(batch_heatmaps):
|
214 |
+
"""
|
215 |
+
get predictions from score maps
|
216 |
+
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
|
217 |
+
"""
|
218 |
+
assert isinstance(
|
219 |
+
batch_heatmaps, np.ndarray
|
220 |
+
), "batch_heatmaps should be numpy.ndarray"
|
221 |
+
assert batch_heatmaps.ndim == 4, "batch_images should be 4-ndim"
|
222 |
+
|
223 |
+
batch_size = batch_heatmaps.shape[0]
|
224 |
+
num_joints = batch_heatmaps.shape[1]
|
225 |
+
width = batch_heatmaps.shape[3]
|
226 |
+
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
|
227 |
+
idx = np.argmax(heatmaps_reshaped, 2)
|
228 |
+
maxvals = np.amax(heatmaps_reshaped, 2)
|
229 |
+
|
230 |
+
maxvals = maxvals.reshape((batch_size, num_joints, 1))
|
231 |
+
idx = idx.reshape((batch_size, num_joints, 1))
|
232 |
+
|
233 |
+
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
|
234 |
+
|
235 |
+
preds[:, :, 0] = (preds[:, :, 0]) % width
|
236 |
+
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
|
237 |
+
|
238 |
+
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
|
239 |
+
pred_mask = pred_mask.astype(np.float32)
|
240 |
+
|
241 |
+
preds *= pred_mask
|
242 |
+
return preds, maxvals
|
243 |
+
|
244 |
+
|
245 |
+
def infer_single_image(model, img_path, input_img_size=(288, 384), return_kps=True):
|
246 |
+
img_path = str(img_path)
|
247 |
+
pose_input, img, center, scale = process_image(
|
248 |
+
img_path, input_img_size=input_img_size
|
249 |
+
)
|
250 |
+
model.setInput(pose_input[None])
|
251 |
+
predicted_heatmap = model.forward()
|
252 |
+
|
253 |
+
if not return_kps:
|
254 |
+
return predicted_heatmap.squeeze(0)
|
255 |
+
|
256 |
+
predicted_keypoints, confidence = get_final_preds(
|
257 |
+
predicted_heatmap, center[None], scale[None], post_process=True
|
258 |
+
)
|
259 |
+
|
260 |
+
(predicted_keypoints, confidence, predicted_heatmap,) = (
|
261 |
+
predicted_keypoints.squeeze(0),
|
262 |
+
confidence.squeeze(0),
|
263 |
+
predicted_heatmap.squeeze(0),
|
264 |
+
)
|
265 |
+
|
266 |
+
return img, predicted_keypoints, confidence, predicted_heatmap
|