Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install diffusers torch moviepy pillow
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
4 |
+
from PIL import Image
|
5 |
+
from moviepy.editor import ImageSequenceClip
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Step 1: Set up Stable Diffusion img2img pipeline
|
9 |
+
def setup_pipeline(model_name="CompVis/stable-diffusion-v1-4"):
|
10 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
|
11 |
+
pipe.to("cuda") # Use GPU for faster generation
|
12 |
+
return pipe
|
13 |
+
|
14 |
+
# Step 2: Generate frames from the single image
|
15 |
+
def generate_frames(pipe, input_image_path, prompt, num_frames=30, guidance_scale=7.5, strength=0.5, output_folder="frames"):
|
16 |
+
os.makedirs(output_folder, exist_ok=True)
|
17 |
+
frames = []
|
18 |
+
|
19 |
+
# Load the input image
|
20 |
+
input_image = Image.open(input_image_path).convert("RGB")
|
21 |
+
|
22 |
+
for i in range(num_frames):
|
23 |
+
# Slightly modify the prompt or strength for variation
|
24 |
+
current_prompt = f"{prompt}, frame {i+1} of {num_frames}"
|
25 |
+
current_strength = strength + (0.01 * i) # Gradual change in strength
|
26 |
+
|
27 |
+
# Generate a new image
|
28 |
+
generated_image = pipe(
|
29 |
+
prompt=current_prompt,
|
30 |
+
image=input_image,
|
31 |
+
strength=current_strength,
|
32 |
+
guidance_scale=guidance_scale
|
33 |
+
).images[0]
|
34 |
+
|
35 |
+
# Save the frame
|
36 |
+
frame_path = os.path.join(output_folder, f"frame_{i:03d}.png")
|
37 |
+
generated_image.save(frame_path)
|
38 |
+
frames.append(frame_path)
|
39 |
+
print(f"Generated frame {i+1}/{num_frames}")
|
40 |
+
|
41 |
+
return frames
|
42 |
+
|
43 |
+
# Step 3: Create video from frames
|
44 |
+
def create_video(frames, output_file="output_video.mp4", fps=24):
|
45 |
+
clip = ImageSequenceClip(frames, fps=fps)
|
46 |
+
clip.write_videofile(output_file, codec="libx264")
|
47 |
+
print(f"Video saved as {output_file}")
|
48 |
+
|
49 |
+
# Step 4: Main script
|
50 |
+
if __name__ == "__main__":
|
51 |
+
# Model and prompt configuration
|
52 |
+
input_image_path = "/mnt/data/Screenshot 2025-01-03 171727.png" # Use the uploaded image
|
53 |
+
prompt = "A child riding a bicycle through a magical forest, dynamic and cinematic lighting"
|
54 |
+
num_frames = 30
|
55 |
+
fps = 24
|
56 |
+
|
57 |
+
# Initialize Stable Diffusion img2img pipeline
|
58 |
+
pipe = setup_pipeline()
|
59 |
+
|
60 |
+
# Generate frames from the single image
|
61 |
+
print("Generating frames...")
|
62 |
+
frames = generate_frames(pipe, input_image_path, prompt, num_frames=num_frames)
|
63 |
+
|
64 |
+
# Create video
|
65 |
+
print("Creating video...")
|
66 |
+
create_video(frames, output_file="image_to_video_diffusion.mp4", fps=fps)
|
67 |
+
|