import gradio as gr import tensorflow as tf import numpy as np import cv2 from PIL import Image from huggingface_hub import from_pretrained_keras def resize_image(img_in,input_height,input_width): return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST) def otsu_copy_binary(img): img_r=np.zeros((img.shape[0],img.shape[1],3)) img1=img[:,:,0] retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) img_r[:,:,0]=threshold1 img_r[:,:,1]=threshold1 img_r[:,:,2]=threshold1 return img_r def visualize_model_output(prediction, img, model_name): if model_name == "SBB/eynollah-binarization": prediction = prediction * -1 prediction = prediction + 1 added_image = prediction * 255 else: unique_classes = np.unique(prediction[:,:,0]) rgb_colors = {'0' : [255, 255, 255], '1' : [255, 0, 0], '2' : [255, 125, 0], '3' : [255, 0, 125], '4' : [125, 125, 125], '5' : [125, 125, 0], '6' : [0, 125, 255], '7' : [0, 125, 0], '8' : [125, 125, 125], '9' : [0, 125, 255], '10' : [125, 0, 125], '11' : [0, 255, 0], '12' : [0, 0, 255], '13' : [0, 255, 255], '14' : [255, 125, 125], '15' : [255, 0, 255]} output = np.zeros(prediction.shape) for unq_class in unique_classes: rgb_class_unique = rgb_colors[str(int(unq_class))] output[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0] output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1] output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2] img = resize_image(img, output.shape[0], output.shape[1]) output = output.astype(np.int32) img = img.astype(np.int32) added_image = cv2.addWeighted(img,0.5,output,0.1,0) return added_image def return_num_columns(img): model_classifier = from_pretrained_keras("SBB/eynollah-column-classifier") img_1ch = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_1ch = img_1ch / 255.0 img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) img_in[0, :, :, 0] = img_1ch[:, :] img_in[0, :, :, 1] = img_1ch[:, :] img_in[0, :, :, 2] = img_1ch[:, :] label_p_pred = model_classifier.predict(img_in, verbose=0) num_col = np.argmax(label_p_pred[0]) + 1 return num_col def return_scaled_image(img, num_col, width_early, model_name): if model_name == "SBB/eynollah-enhancement" or "SBB/eynollah-main-regions-aug-rotation" or "SBB/eynollah-main-regions-aug-scaling" or "SBB/eynollah-main-regions-ensembled" or "SBB/eynollah-textline" or "SBB/eynollah-binarization": if num_col == 1 and width_early < 1100: img_w_new = 2000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) elif num_col == 1 and width_early >= 2500: img_w_new = 2000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) elif num_col == 1 and width_early >= 1100 and width_early < 2500: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 2 and width_early < 2000: img_w_new = 2400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) elif num_col == 2 and width_early >= 3500: img_w_new = 2400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) elif num_col == 2 and width_early >= 2000 and width_early < 3500: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 3 and width_early < 2000: img_w_new = 3000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) elif num_col == 3 and width_early >= 4000: img_w_new = 3000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) elif num_col == 3 and width_early >= 2000 and width_early < 4000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 4 and width_early < 2500: img_w_new = 4000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) elif num_col == 4 and width_early >= 5000: img_w_new = 4000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) elif num_col == 4 and width_early >= 2500 and width_early < 5000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 5 and width_early < 3700: img_w_new = 5000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) elif num_col == 5 and width_early >= 7000: img_w_new = 5000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) elif num_col == 5 and width_early >= 3700 and width_early < 7000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 6 and width_early < 4500: img_w_new = 6500 # 5400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500) else: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) img_new = resize_image(img, img_h_new, img_w_new) elif model_name=="SBB/eynollah-main-regions" or "SBB/eynollah-textline_light": if num_col == 1: img_w_new = 1000 img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new) elif num_col == 2: img_w_new = 1500 img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new) elif num_col == 3: img_w_new = 2000 img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new) elif num_col == 4: img_w_new = 2500 img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new) elif num_col == 5: img_w_new = 3000 img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new) else: img_w_new = 4000 img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new) img_resized = resize_image(img,img_h_new, img_w_new ) img_new = otsu_copy_binary(img_resized) return img_new def do_prediction(model_name, img): img_org = np.copy(img) model = from_pretrained_keras(model_name) match model_name: # numerical output case "SBB/eynollah-column-classifier": img_1ch = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_1ch = img_1ch / 255.0 img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) img_in[0, :, :, 0] = img_1ch[:, :] img_in[0, :, :, 1] = img_1ch[:, :] img_in[0, :, :, 2] = img_1ch[:, :] label_p_pred = model.predict(img_in, verbose=0) num_col = np.argmax(label_p_pred[0]) + 1 return "Found {} columns".format(num_col), None case "SBB/eynollah-page-extraction": img_height_model = model.layers[len(model.layers) - 1].output_shape[1] img_width_model = model.layers[len(model.layers) - 1].output_shape[2] img_h_page = img.shape[0] img_w_page = img.shape[1] img = img / float(255.0) img = resize_image(img, img_height_model, img_width_model) label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]), verbose=0) seg = np.argmax(label_p_pred, axis=3)[0] seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) prediction_true = resize_image(seg_color, img_h_page, img_w_page) prediction_true = prediction_true.astype(np.uint8) imgray = cv2.cvtColor(prediction_true, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(imgray, 0, 255, 0) #thresh = cv2.dilate(thresh, KERNEL, iterations=3) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours)>0: cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))]) cnt = contours[np.argmax(cnt_size)] x, y, w, h = cv2.boundingRect(cnt) if x <= 30: w += x x = 0 if (img_org.shape[1] - (x + w)) <= 30: w = w + (img_org.shape[1] - (x + w)) if y <= 30: h = h + y y = 0 if (img_org.shape[0] - (y + h)) <= 30: h = h + (img_org.shape[0] - (y + h)) box = [x, y, w, h] img_border = np.zeros((prediction_true.shape[0],prediction_true.shape[1])) img_border[y:y+h, x:x+w] = 1 img_border = np.repeat(img_border[:, :, np.newaxis], 3, axis=2) else: img_border = np.zeros((prediction_true.shape[0],prediction_true.shape[1])) img_border[:, :] = 1 img_border = np.repeat(img_border[:, :, np.newaxis], 3, axis=2) return "No numerical output", visualize_model_output(img_border,img_org, model_name) # bitmap output case "SBB/eynollah-binarization" | "SBB/eynollah-textline" | "SBB/eynollah-textline_light" | "SBB/eynollah-enhancement" | "SBB/eynollah-tables" | "SBB/eynollah-main-regions" | "SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled" | "SBB/eynollah-full-regions-1column" | "SBB/eynollah-full-regions-3pluscolumn": img_height_model=model.layers[len(model.layers)-1].output_shape[1] img_width_model=model.layers[len(model.layers)-1].output_shape[2] n_classes=model.layers[len(model.layers)-1].output_shape[3] img_org = np.copy(img) img_height_h = img_org.shape[0] img_width_h = img_org.shape[1] num_col_classifier = return_num_columns(img) width_early = img.shape[1] img = return_scaled_image(img, num_col_classifier, width_early, model_name) if img.shape[0] < img_height_model: img = resize_image(img, img_height_model, img.shape[1]) if img.shape[1] < img_width_model: img = resize_image(img, img.shape[0], img_width_model) marginal_of_patch_percent = 0.1 margin = int(marginal_of_patch_percent * img_height_model) width_mid = img_width_model - 2 * margin height_mid = img_height_model - 2 * margin img = img / float(255.0) img = img.astype(np.float16) img_h = img.shape[0] img_w = img.shape[1] prediction_true = np.zeros((img_h, img_w, 3)) mask_true = np.zeros((img_h, img_w)) nxf = img_w / float(width_mid) nyf = img_h / float(height_mid) nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf) nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf) for i in range(nxf): for j in range(nyf): if i == 0: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model else: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model if j == 0: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model else: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model if index_x_u > img_w: index_x_u = img_w index_x_d = img_w - img_width_model if index_y_u > img_h: index_y_u = img_h index_y_d = img_h - img_height_model img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), verbose=0) if model_name == "SBB/eynollah-enhancement": seg_color = label_p_pred[0, :, :, :] seg_color = seg_color * 255 else: seg = np.argmax(label_p_pred, axis=3)[0] seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) if i == 0 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] #seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color elif i == 0 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color elif i == 0 and j != 0 and j != nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j != 0 and j != nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color elif i != 0 and i != nxf - 1 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color elif i != 0 and i != nxf - 1 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color else: seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color if model_name == "SBB/eynollah-enhancement": prediction_true = prediction_true.astype(int) return "No numerical output", prediction_true else: prediction_true = prediction_true.astype(np.uint8) return "No numerical output", visualize_model_output(prediction_true,img_org, model_name) # catch-all (we should not reach this) case _: return None, None title = "Welcome to the Eynollah Demo page! 👁️" description = """