import gradio as gr import tensorflow as tf import numpy as np import cv2 from PIL import Image from huggingface_hub import from_pretrained_keras def resize_image(img_in,input_height,input_width): return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST) def otsu_copy_binary(img): img_r=np.zeros((img.shape[0],img.shape[1],3)) img1=img[:,:,0] retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) img_r[:,:,0]=threshold1 img_r[:,:,1]=threshold1 img_r[:,:,2]=threshold1 return img_r def visualize_model_output(prediction, img): unique_classes = np.unique(prediction[:,:,0]) rgb_colors = {'0' : [255, 255, 255], '1' : [255, 0, 0], '2' : [255, 125, 0], '3' : [255, 0, 125], '4' : [125, 125, 125], '5' : [125, 125, 0], '6' : [0, 125, 255], '7' : [0, 125, 0], '8' : [125, 125, 125], '9' : [0, 125, 255], '10' : [125, 0, 125], '11' : [0, 255, 0], '12' : [0, 0, 255], '13' : [0, 255, 255], '14' : [255, 125, 125], '15' : [255, 0, 255]} output = np.zeros(prediction.shape) for unq_class in unique_classes: print(unq_class,'unq_class') rgb_class_unique = rgb_colors[str(int(unq_class))] output[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0] output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1] output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2] img = resize_image(img, output.shape[0], output.shape[1]) output = output.astype(np.int32) img = img.astype(np.int32) added_image = cv2.addWeighted(img,0.5,output,0.1,0) return added_image def return_num_columns(img): model_classifier = from_pretrained_keras("SBB/eynollah-column-classifier") img_1ch = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_1ch = img_1ch / 255.0 img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) img_in[0, :, :, 0] = img_1ch[:, :] img_in[0, :, :, 1] = img_1ch[:, :] img_in[0, :, :, 2] = img_1ch[:, :] label_p_pred = model_classifier.predict(img_in, verbose=0) num_col = np.argmax(label_p_pred[0]) + 1 return num_col def do_prediction(model_name, img): img_org = np.copy(img) model = from_pretrained_keras(model_name) match model_name: # numerical output case "SBB/eynollah-column-classifier": img_1ch = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_1ch = img_1ch / 255.0 img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) img_in[0, :, :, 0] = img_1ch[:, :] img_in[0, :, :, 1] = img_1ch[:, :] img_in[0, :, :, 2] = img_1ch[:, :] label_p_pred = model.predict(img_in, verbose=0) num_col = np.argmax(label_p_pred[0]) + 1 return "Found {} columns".format(num_col), None # bitmap output case "SBB/eynollah-binarization" | "SBB/eynollah-page-extraction" | "SBB/eynollah-textline" | "SBB/eynollah-textline_light" | "SBB/eynollah-enhancement" | "SBB/eynollah-tables" | "SBB/eynollah-main-regions" | "SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled" | "SBB/eynollah-full-regions-1column" | "SBB/eynollah-full-regions-3pluscolumn": img_height_model=model.layers[len(model.layers)-1].output_shape[1] img_width_model=model.layers[len(model.layers)-1].output_shape[2] n_classes=model.layers[len(model.layers)-1].output_shape[3] img_org = np.copy(img) img_height_h = img_org.shape[0] img_width_h = img_org.shape[1] num_col_classifier = return_num_columns(img) if num_col_classifier == 1: img_w_new = 1000 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) elif num_col_classifier == 2: img_w_new = 1500 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) elif num_col_classifier == 3: img_w_new = 2000 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) elif num_col_classifier == 4: img_w_new = 2500 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) elif num_col_classifier == 5: img_w_new = 3000 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) else: img_w_new = 4000 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) img_resized = resize_image(img,img_h_new, img_w_new ) img = otsu_copy_binary(img_resized) if img.shape[0] < img_height_model: img = resize_image(img, img_height_model, img.shape[1]) if img.shape[1] < img_width_model: img = resize_image(img, img.shape[0], img_width_model) marginal_of_patch_percent = 0.1 margin = int(marginal_of_patch_percent * img_height_model) width_mid = img_width_model - 2 * margin height_mid = img_height_model - 2 * margin img = img / float(255.0) img = img.astype(np.float16) img_h = img.shape[0] img_w = img.shape[1] prediction_true = np.zeros((img_h, img_w, 3)) mask_true = np.zeros((img_h, img_w)) nxf = img_w / float(width_mid) nyf = img_h / float(height_mid) nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf) nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf) for i in range(nxf): for j in range(nyf): if i == 0: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model else: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model if j == 0: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model else: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model if index_x_u > img_w: index_x_u = img_w index_x_d = img_w - img_width_model if index_y_u > img_h: index_y_u = img_h index_y_d = img_h - img_height_model img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), verbose=0) seg = np.argmax(label_p_pred, axis=3)[0] seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) if i == 0 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] #seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color elif i == 0 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color elif i == 0 and j != 0 and j != nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j != 0 and j != nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color elif i != 0 and i != nxf - 1 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color elif i != 0 and i != nxf - 1 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color else: seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color prediction_true = prediction_true.astype(np.uint8) ''' img = img / float(255.0) image = resize_image(image, 224,448) prediction = model.predict(image.reshape(1,224,448,image.shape[2])) prediction = tf.squeeze(tf.round(prediction)) prediction = np.argmax(prediction,axis=2) prediction = np.repeat(prediction[:, :, np.newaxis]*255, 3, axis=2) print(prediction.shape) ''' #prediction_true = prediction_true * -1 #prediction_true = prediction_true + 1 return "No numerical output", visualize_model_output(prediction_true,img_org) # catch-all (we should not reach this) case _: return None, None title = "Welcome to the Eynollah Demo page! 👁️" description = """