vahidrezanezhad commited on
Commit
94a86ca
1 Parent(s): 6bdbb2a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -182,14 +182,12 @@ def do_prediction(model_name, img):
182
  return "Found {} columns".format(num_col), None
183
 
184
  case "SBB/eynollah-page-extraction":
185
-
186
  img_height_model = model.layers[len(model.layers) - 1].output_shape[1]
187
  img_width_model = model.layers[len(model.layers) - 1].output_shape[2]
188
 
189
  img_h_page = img.shape[0]
190
  img_w_page = img.shape[1]
191
 
192
- print(img.shape, img_h_page,img_w_page)
193
  img = img / float(255.0)
194
  img = resize_image(img, img_height_model, img_width_model)
195
 
@@ -206,7 +204,6 @@ def do_prediction(model_name, img):
206
  #thresh = cv2.dilate(thresh, KERNEL, iterations=3)
207
  contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
208
 
209
- print(len(contours),'ggg')
210
  if len(contours)>0:
211
  cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
212
  cnt = contours[np.argmax(cnt_size)]
@@ -224,7 +221,6 @@ def do_prediction(model_name, img):
224
 
225
  box = [x, y, w, h]
226
 
227
- print(box)
228
 
229
  img_border = np.zeros((prediction_true.shape[0],prediction_true.shape[1]))
230
  img_border[y:y+h, x:x+w] = 1
@@ -308,9 +304,12 @@ def do_prediction(model_name, img):
308
  label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
309
  verbose=0)
310
 
311
- seg = np.argmax(label_p_pred, axis=3)[0]
312
-
313
- seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
 
 
 
314
 
315
  if i == 0 and j == 0:
316
  seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
@@ -358,9 +357,14 @@ def do_prediction(model_name, img):
358
  #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
359
  prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
360
 
361
- prediction_true = prediction_true.astype(np.uint8)
 
 
 
 
 
362
 
363
- return "No numerical output", visualize_model_output(prediction_true,img_org, model_name)
364
 
365
  # catch-all (we should not reach this)
366
  case _:
 
182
  return "Found {} columns".format(num_col), None
183
 
184
  case "SBB/eynollah-page-extraction":
 
185
  img_height_model = model.layers[len(model.layers) - 1].output_shape[1]
186
  img_width_model = model.layers[len(model.layers) - 1].output_shape[2]
187
 
188
  img_h_page = img.shape[0]
189
  img_w_page = img.shape[1]
190
 
 
191
  img = img / float(255.0)
192
  img = resize_image(img, img_height_model, img_width_model)
193
 
 
204
  #thresh = cv2.dilate(thresh, KERNEL, iterations=3)
205
  contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
206
 
 
207
  if len(contours)>0:
208
  cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
209
  cnt = contours[np.argmax(cnt_size)]
 
221
 
222
  box = [x, y, w, h]
223
 
 
224
 
225
  img_border = np.zeros((prediction_true.shape[0],prediction_true.shape[1]))
226
  img_border[y:y+h, x:x+w] = 1
 
304
  label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
305
  verbose=0)
306
 
307
+ if model_name == "SBB/eynollah-enhancement":
308
+ seg_color = label_p_pred[0, :, :, :]
309
+ seg_color = seg_color * 255
310
+ else:
311
+ seg = np.argmax(label_p_pred, axis=3)[0]
312
+ seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
313
 
314
  if i == 0 and j == 0:
315
  seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
 
357
  #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
358
  prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
359
 
360
+ if model_name == "SBB/eynollah-enhancement":
361
+ prediction_true = prediction_true.astype(int)
362
+ return "No numerical output", prediction_true
363
+ else:
364
+ prediction_true = prediction_true.astype(np.uint8)
365
+ return "No numerical output", visualize_model_output(prediction_true,img_org, model_name)
366
 
367
+
368
 
369
  # catch-all (we should not reach this)
370
  case _: