Spaces:
Runtime error
Runtime error
vahidrezanezhad
commited on
Commit
•
53d0fd5
1
Parent(s):
af99749
Update app.py
Browse files
app.py
CHANGED
@@ -74,7 +74,88 @@ def return_num_columns(img):
|
|
74 |
label_p_pred = model_classifier.predict(img_in, verbose=0)
|
75 |
num_col = np.argmax(label_p_pred[0]) + 1
|
76 |
return num_col
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def do_prediction(model_name, img):
|
79 |
img_org = np.copy(img)
|
80 |
model = from_pretrained_keras(model_name)
|
@@ -110,33 +191,11 @@ def do_prediction(model_name, img):
|
|
110 |
img_width_h = img_org.shape[1]
|
111 |
|
112 |
num_col_classifier = return_num_columns(img)
|
|
|
113 |
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
img_w_new = 1000
|
118 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
119 |
-
|
120 |
-
elif num_col_classifier == 2:
|
121 |
-
img_w_new = 1500
|
122 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
123 |
-
|
124 |
-
elif num_col_classifier == 3:
|
125 |
-
img_w_new = 2000
|
126 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
127 |
-
|
128 |
-
elif num_col_classifier == 4:
|
129 |
-
img_w_new = 2500
|
130 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
131 |
-
elif num_col_classifier == 5:
|
132 |
-
img_w_new = 3000
|
133 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
134 |
-
else:
|
135 |
-
img_w_new = 4000
|
136 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
137 |
-
img_resized = resize_image(img,img_h_new, img_w_new )
|
138 |
-
|
139 |
-
img = otsu_copy_binary(img_resized)
|
140 |
|
141 |
|
142 |
|
|
|
74 |
label_p_pred = model_classifier.predict(img_in, verbose=0)
|
75 |
num_col = np.argmax(label_p_pred[0]) + 1
|
76 |
return num_col
|
77 |
+
|
78 |
+
def return_scaled_image(img, num_col, width_early, model_name):
|
79 |
+
if model_name== ("SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled"):
|
80 |
+
if num_col == 1 and width_early < 1100:
|
81 |
+
img_w_new = 2000
|
82 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
83 |
+
elif num_col == 1 and width_early >= 2500:
|
84 |
+
img_w_new = 2000
|
85 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
86 |
+
elif num_col == 1 and width_early >= 1100 and width_early < 2500:
|
87 |
+
img_w_new = width_early
|
88 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
89 |
+
elif num_col == 2 and width_early < 2000:
|
90 |
+
img_w_new = 2400
|
91 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400)
|
92 |
+
elif num_col == 2 and width_early >= 3500:
|
93 |
+
img_w_new = 2400
|
94 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400)
|
95 |
+
elif num_col == 2 and width_early >= 2000 and width_early < 3500:
|
96 |
+
img_w_new = width_early
|
97 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
98 |
+
elif num_col == 3 and width_early < 2000:
|
99 |
+
img_w_new = 3000
|
100 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000)
|
101 |
+
elif num_col == 3 and width_early >= 4000:
|
102 |
+
img_w_new = 3000
|
103 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000)
|
104 |
+
elif num_col == 3 and width_early >= 2000 and width_early < 4000:
|
105 |
+
img_w_new = width_early
|
106 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
107 |
+
elif num_col == 4 and width_early < 2500:
|
108 |
+
img_w_new = 4000
|
109 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000)
|
110 |
+
elif num_col == 4 and width_early >= 5000:
|
111 |
+
img_w_new = 4000
|
112 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000)
|
113 |
+
elif num_col == 4 and width_early >= 2500 and width_early < 5000:
|
114 |
+
img_w_new = width_early
|
115 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
116 |
+
elif num_col == 5 and width_early < 3700:
|
117 |
+
img_w_new = 5000
|
118 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000)
|
119 |
+
elif num_col == 5 and width_early >= 7000:
|
120 |
+
img_w_new = 5000
|
121 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000)
|
122 |
+
elif num_col == 5 and width_early >= 3700 and width_early < 7000:
|
123 |
+
img_w_new = width_early
|
124 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
125 |
+
elif num_col == 6 and width_early < 4500:
|
126 |
+
img_w_new = 6500 # 5400
|
127 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500)
|
128 |
+
else:
|
129 |
+
img_w_new = width_early
|
130 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
131 |
+
img_new = resize_image(img, img_h_new, img_w_new)
|
132 |
+
if model_name=="SBB/eynollah-main-regions":
|
133 |
+
if num_col == 1:
|
134 |
+
img_w_new = 1000
|
135 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
136 |
+
|
137 |
+
elif num_col == 2:
|
138 |
+
img_w_new = 1500
|
139 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
140 |
+
|
141 |
+
elif num_col == 3:
|
142 |
+
img_w_new = 2000
|
143 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
144 |
+
|
145 |
+
elif num_col == 4:
|
146 |
+
img_w_new = 2500
|
147 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
148 |
+
elif num_col == 5:
|
149 |
+
img_w_new = 3000
|
150 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
151 |
+
else:
|
152 |
+
img_w_new = 4000
|
153 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
154 |
+
img_resized = resize_image(img,img_h_new, img_w_new )
|
155 |
+
|
156 |
+
img = otsu_copy_binary(img_resized)
|
157 |
+
return img
|
158 |
+
|
159 |
def do_prediction(model_name, img):
|
160 |
img_org = np.copy(img)
|
161 |
model = from_pretrained_keras(model_name)
|
|
|
191 |
img_width_h = img_org.shape[1]
|
192 |
|
193 |
num_col_classifier = return_num_columns(img)
|
194 |
+
width_early = img.shape[1]
|
195 |
|
196 |
|
197 |
+
img = return_scaled_image(img, num_col_classifier, width_early, model_name)
|
198 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
|
201 |
|