Spaces:
Runtime error
Runtime error
RufusRubin777
commited on
Delete app_1.py
Browse files
app_1.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
-
import json
|
4 |
-
from byaldi import RAGMultiModalModel
|
5 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
-
from qwen_vl_utils import process_vision_info
|
7 |
-
import torch
|
8 |
-
import re
|
9 |
-
|
10 |
-
# Load models
|
11 |
-
def load_models():
|
12 |
-
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
13 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU
|
14 |
-
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
15 |
-
return RAG, model, processor
|
16 |
-
|
17 |
-
RAG, model, processor = load_models()
|
18 |
-
|
19 |
-
# Function for OCR and search
|
20 |
-
def ocr_and_search(image, keyword):
|
21 |
-
text_query = "Extract all the text in Sanskrit and English from the image."
|
22 |
-
|
23 |
-
# Prepare message for Qwen model
|
24 |
-
messages = [
|
25 |
-
{
|
26 |
-
"role": "user",
|
27 |
-
"content": [
|
28 |
-
{"type": "image", "image": image},
|
29 |
-
{"type": "text", "text": text_query},
|
30 |
-
],
|
31 |
-
}
|
32 |
-
]
|
33 |
-
|
34 |
-
# Process the image
|
35 |
-
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
36 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
37 |
-
inputs = processor(
|
38 |
-
text=[text],
|
39 |
-
images=image_inputs,
|
40 |
-
videos=video_inputs,
|
41 |
-
padding=True,
|
42 |
-
return_tensors="pt",
|
43 |
-
).to("cpu") # Use CPU
|
44 |
-
|
45 |
-
# Generate text
|
46 |
-
with torch.no_grad():
|
47 |
-
generated_ids = model.generate(**inputs, max_new_tokens=2000)
|
48 |
-
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
49 |
-
extracted_text = processor.batch_decode(
|
50 |
-
generated_ids_trimmed,
|
51 |
-
skip_special_tokens=True,
|
52 |
-
clean_up_tokenization_spaces=False
|
53 |
-
)[0]
|
54 |
-
|
55 |
-
# Perform keyword search with highlighting
|
56 |
-
keyword_lower = keyword.lower()
|
57 |
-
sentences = extracted_text.split('. ')
|
58 |
-
matched_sentences = []
|
59 |
-
for sentence in sentences:
|
60 |
-
if keyword_lower in sentence.lower():
|
61 |
-
highlighted_sentence = re.sub(
|
62 |
-
f'({re.escape(keyword)})',
|
63 |
-
r'<mark>\1</mark>',
|
64 |
-
sentence,
|
65 |
-
flags=re.IGNORECASE
|
66 |
-
)
|
67 |
-
matched_sentences.append(highlighted_sentence)
|
68 |
-
|
69 |
-
return extracted_text, matched_sentences
|
70 |
-
|
71 |
-
# Gradio App
|
72 |
-
def app(image, keyword):
|
73 |
-
extracted_text, search_results = ocr_and_search(image, keyword)
|
74 |
-
search_results_str = "<br>".join(search_results) if search_results else "No matches found."
|
75 |
-
return extracted_text, search_results_str
|
76 |
-
|
77 |
-
# Gradio Interface
|
78 |
-
iface = gr.Interface(
|
79 |
-
fn=app,
|
80 |
-
inputs=[
|
81 |
-
gr.Image(type="pil", label="Upload an Image"),
|
82 |
-
gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword")
|
83 |
-
],
|
84 |
-
outputs=[
|
85 |
-
gr.Textbox(label="Extracted Text"),
|
86 |
-
gr.HTML(label="Search Results"),
|
87 |
-
],
|
88 |
-
title="OCR and Keyword Search in Images",
|
89 |
-
)
|
90 |
-
|
91 |
-
# Launch Gradio App
|
92 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|