Qwen2VL-OCR_CPU / app.py
RufusRubin777's picture
Update app.py
a0bcd50 verified
import gradio as gr
from PIL import Image
import json
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import re
# Load models
def load_models():
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
return RAG, model, processor
RAG, model, processor = load_models()
# Function for OCR
def extract_text_from_image(image):
text_query = "Extract all the text in Sanskrit and English from the image."
# Prepare message for Qwen model
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_query}
]
}
]
# Process the image
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
).to("cpu") # Use CPU
# Generate text
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=2000)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
extracted_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return extracted_text
# Function for keyword search
def search_keyword_in_text(extracted_text, keyword):
keyword_lower = keyword.lower()
sentences = extracted_text.split('. ')
matched_sentences = []
for sentence in sentences:
if keyword_lower in sentence.lower():
highlighted_sentence = re.sub(f'({re.escape(keyword)})', r'<mark>\1</mark>', sentence, flags=re.IGNORECASE)
matched_sentences.append(highlighted_sentence)
return matched_sentences if matched_sentences else ["No matches found."]
# Gradio App
def app_extract_text(image):
extracted_text = extract_text_from_image(image)
return extracted_text
def app_search_keyword(extracted_text, keyword):
search_results = search_keyword_in_text(extracted_text, keyword)
search_results_str = "<br>".join(search_results)
return search_results_str
title_html = """
<h1><span class="gradient-text" id="text">IIT Roorkee - OCR and Document Search Web Application Prototype (ColPali implementation of the new Byaldi library + Huggingface transformers for Qwen2-VL.)</span></h1>
"""
# Gradio Interface
with gr.Blocks() as iface:
gr.HTML(title_html)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload an Image")
extract_button = gr.Button("Extract Text")
extracted_text_output = gr.Textbox(label="Extracted Text")
extract_button.click(app_extract_text, inputs=image_input, outputs=extracted_text_output)
with gr.Column():
keyword_input = gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword")
search_button = gr.Button("Search Keyword")
search_results_output = gr.HTML(label="Search Results")
search_button.click(app_search_keyword, inputs=[extracted_text_output, keyword_input], outputs=search_results_output)
# Launch Gradio App
iface.launch()