Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ import email, imaplib, json, time
|
|
8 |
import torch, logging
|
9 |
import uvicorn
|
10 |
from pydantic import BaseModel
|
|
|
|
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
@@ -16,18 +18,14 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
# Email and database configuration
|
19 |
-
IMAP_SERVER = 'imap.gmail.com'
|
20 |
-
EMAIL_ADDRESS = '[email protected]'
|
21 |
-
PASSWORD = 'gclc wsnx kywt uvqy ' # Store this securely in production
|
22 |
DB_CONFIG = {
|
23 |
'host': '0.tcp.in.ngrok.io',
|
24 |
-
'port':
|
25 |
'user': 'root',
|
26 |
-
'password': '',
|
27 |
'database': 'shipment_details'
|
28 |
-
}
|
29 |
|
30 |
-
# JSON format for extracted shipment details
|
31 |
output_format = {
|
32 |
"origin": "",
|
33 |
"destination": "",
|
@@ -37,26 +35,25 @@ output_format = {
|
|
37 |
"Description": "",
|
38 |
"Quantities": "",
|
39 |
"Carrier_details": ""
|
40 |
-
}
|
41 |
|
42 |
-
|
43 |
-
prompt = """
|
44 |
System prompt: You will be provided with an email containing shipment details. Your task is to extract specific information based on the given instructions.
|
45 |
|
46 |
Instructions:
|
47 |
-
1. Focus only on extracting details about future shipments
|
48 |
-
2.
|
49 |
-
3. Extract the following:
|
50 |
-
- origin
|
51 |
-
- destination
|
52 |
-
- expected_shipment_datetime (format: yyyy-mm-dd hh:mm:ss)
|
53 |
-
- types_of_service (AIR, LCL, FCL)
|
54 |
-
- warehouse
|
55 |
-
- description
|
56 |
-
- quantities
|
57 |
-
- carrier_details
|
58 |
-
4.
|
59 |
-
{
|
60 |
"origin": "",
|
61 |
"destination": "",
|
62 |
"expected_shipment_datetime": "",
|
@@ -65,9 +62,68 @@ Instructions:
|
|
65 |
"description": "",
|
66 |
"quantities": "",
|
67 |
"carrier_details": ""
|
68 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
"""
|
70 |
|
|
|
71 |
# Function to insert extracted shipment details into MySQL database
|
72 |
def insert_data(extracted_details):
|
73 |
try:
|
@@ -116,87 +172,51 @@ def insert_data(extracted_details):
|
|
116 |
logger.error(f"Database error: {db_err}")
|
117 |
except Exception as ex:
|
118 |
logger.error(f"Error inserting data: {ex}")
|
|
|
|
|
119 |
|
120 |
-
# Function to extract shipment details using an LLM
|
121 |
-
def get_details(mail):
|
122 |
-
try:
|
123 |
-
# Initialize LLM model and tokenizer
|
124 |
-
# Uncomment below if using Hugging Face models, or load your specific model accordingly
|
125 |
-
# pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
126 |
-
# output = pipe(f"{prompt}\n{mail}", max_new_tokens=200)
|
127 |
-
|
128 |
-
# Using Llama model for completion
|
129 |
-
llm = Llama(model_path="./ggml-model-q8_0.gguf", n_ctx=2048, n_batch=512)
|
130 |
-
response = llm.create_chat_completion(
|
131 |
-
messages=[
|
132 |
-
{"role": "system", "content": prompt},
|
133 |
-
{"role": "user", "content": mail}
|
134 |
-
],
|
135 |
-
max_tokens=200
|
136 |
-
)
|
137 |
-
return response['choices'][0]['message']['content']
|
138 |
-
|
139 |
-
except Exception as ex:
|
140 |
-
logger.error(f"Error generating details from LLM: {ex}")
|
141 |
-
return None
|
142 |
-
|
143 |
-
# Function to read and process unread emails
|
144 |
def read_email():
|
145 |
-
logging.info('ready to read email ! ...')
|
146 |
try:
|
147 |
-
|
148 |
-
|
149 |
-
mail.login(EMAIL_ADDRESS, PASSWORD)
|
150 |
-
mail.select('inbox')
|
151 |
-
logging.info('select mail inbox')
|
152 |
-
status, messages = mail.search(None, 'UNSEEN')
|
153 |
-
message_ids = messages[0].split()
|
154 |
-
logging.info(f"Total unread emails: {len(message_ids)}")
|
155 |
-
print(f"Total unread emails: {len(message_ids)}")
|
156 |
-
|
157 |
-
for message_id in message_ids:
|
158 |
try:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
169 |
|
170 |
-
#
|
171 |
-
|
172 |
-
for part in email_message.walk():
|
173 |
-
if part.get_content_type() == 'text/plain':
|
174 |
-
email_body = part.get_payload(decode=True).decode('utf-8')
|
175 |
-
break
|
176 |
-
else:
|
177 |
-
email_body = email_message.get_payload(decode=True).decode('utf-8')
|
178 |
-
|
179 |
-
# Extract and store details
|
180 |
-
extracted_details_str = get_details(email_body)
|
181 |
-
extracted_details = json.loads(extracted_details_str)
|
182 |
meta_data = {
|
183 |
-
'sender': sender
|
|
|
|
|
|
|
|
|
184 |
}
|
|
|
185 |
extracted_details.update(meta_data)
|
|
|
|
|
186 |
insert_data(extracted_details)
|
187 |
|
188 |
except Exception as e:
|
189 |
-
|
190 |
-
|
191 |
-
mail.close()
|
192 |
-
mail.logout()
|
193 |
-
|
194 |
except Exception as e:
|
195 |
-
|
196 |
|
197 |
-
|
|
|
198 |
running = False
|
199 |
-
loop_thread = None
|
200 |
|
201 |
# HTML content for the web interface
|
202 |
html_content = """
|
@@ -218,28 +238,38 @@ html_content = """
|
|
218 |
cursor: pointer;
|
219 |
}
|
220 |
button.stop { background-color: #f44336; }
|
|
|
221 |
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
</head>
|
223 |
<body>
|
224 |
-
<h1>Email Processing Status: {{ status }}</h1>
|
|
|
|
|
225 |
</body>
|
226 |
</html>
|
227 |
"""
|
228 |
|
229 |
-
class ActionModel(BaseModel):
|
230 |
-
action: str # 'start' or 'stop'
|
231 |
-
|
232 |
-
class ModelData(BaseModel):
|
233 |
-
data: str # Additional email-related information
|
234 |
-
|
235 |
# Function to process emails in a loop
|
236 |
def email_processing_loop():
|
237 |
global running
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
|
244 |
# Endpoint to display the current email processor status
|
245 |
@app.get("/", response_class=HTMLResponse)
|
@@ -247,40 +277,34 @@ async def home():
|
|
247 |
global running
|
248 |
status = "Running" if running else "Stopped"
|
249 |
return HTMLResponse(content=html_content.replace("{{ status }}", status), status_code=200)
|
250 |
-
|
|
|
|
|
|
|
251 |
global running, loop_thread
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
loop_thread = threading.Thread(target=email_processing_loop, daemon=True)
|
260 |
-
loop_thread.start()
|
261 |
-
logger.info("Email processing loop started.")
|
262 |
-
else:
|
263 |
-
logger.info("Email processing loop is already running.")
|
264 |
-
|
265 |
-
elif action.action == "stop":
|
266 |
-
if running:
|
267 |
-
running = False
|
268 |
-
logger.info("Email processing loop stopped.")
|
269 |
-
else:
|
270 |
-
logger.info("Email processing loop is not running.")
|
271 |
-
|
272 |
else:
|
273 |
-
|
274 |
-
|
275 |
-
status = "Running" if running else "Stopped"
|
276 |
-
return HTMLResponse(content=html_content.replace("{{ status }}", status), status_code=200)
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
if __name__ == "__main__":
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
# threading.Thread(target=email_processing_loop, daemon=True).start()
|
285 |
-
logging.info('...')
|
286 |
-
uvicorn.run()
|
|
|
8 |
import torch, logging
|
9 |
import uvicorn
|
10 |
from pydantic import BaseModel
|
11 |
+
import pandas as pd
|
12 |
+
from llama_cpp import Llama
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
|
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
# Email and database configuration
|
|
|
|
|
|
|
21 |
DB_CONFIG = {
|
22 |
'host': '0.tcp.in.ngrok.io',
|
23 |
+
'port': 14458,
|
24 |
'user': 'root',
|
25 |
+
'password': '',
|
26 |
'database': 'shipment_details'
|
27 |
+
}
|
28 |
|
|
|
29 |
output_format = {
|
30 |
"origin": "",
|
31 |
"destination": "",
|
|
|
35 |
"Description": "",
|
36 |
"Quantities": "",
|
37 |
"Carrier_details": ""
|
38 |
+
}
|
39 |
|
40 |
+
prompt = f"""
|
|
|
41 |
System prompt: You will be provided with an email containing shipment details. Your task is to extract specific information based on the given instructions.
|
42 |
|
43 |
Instructions:
|
44 |
+
1. The input email may contain irrelevant information. Focus only on extracting details about future shipments.
|
45 |
+
2. The output should be in JSON format. If a type of information is not found, it should be marked as null.
|
46 |
+
3. Extract the following information:
|
47 |
+
- origin: The origin location of the consignment.
|
48 |
+
- destination: The destination location of the consignment.
|
49 |
+
- expected_shipment_datetime: The expected date and time of delivery to the warehouse (format: yyyy-mm-dd hh:mm:ss).
|
50 |
+
- types_of_service: The type of service (AIR, LCL, FCL). AIR can be mentioned as flight, aeroplane, or any mode of air transport. LCL is a Less-Container Load, and FCL is a Full-Container Load.
|
51 |
+
- warehouse: The name of the warehouse.
|
52 |
+
- description: A brief description of the email (ASN).
|
53 |
+
- quantities: The number of items in the shipment.
|
54 |
+
- carrier_details: The details of the carrier.
|
55 |
+
4. the output extracted information contains must be in this format:
|
56 |
+
{{
|
57 |
"origin": "",
|
58 |
"destination": "",
|
59 |
"expected_shipment_datetime": "",
|
|
|
62 |
"description": "",
|
63 |
"quantities": "",
|
64 |
"carrier_details": ""
|
65 |
+
}}
|
66 |
+
Examples:
|
67 |
+
|
68 |
+
1. Email: We are pleased to inform you of an upcoming shipment originating from Hamburg and destined for New York. The shipment is expected to arrive on August 15, 2024. This consignment includes various electronics, with an estimated quantity of 200 units. The service type for this shipment is AIR, provided by our reliable carrier, Sky Logistics.
|
69 |
+
Extracted Information:
|
70 |
+
origin: Hamburg,
|
71 |
+
destination: New York,
|
72 |
+
expected_shipment_datetime: 2024-08-15 00:00:000,
|
73 |
+
types_of_service: AIR,
|
74 |
+
warehouse: Sky Logistics,
|
75 |
+
description: We are pleased to inform you of an upcoming shipment originating from Hamburg and destined for New York. The shipment is expected to arrive on August 15, 2024.,
|
76 |
+
quantities: 200 units,
|
77 |
+
carrier_details: Sky Logistics
|
78 |
+
|
79 |
+
2. Email: Please be advised of a shipment from our supplier in Shanghai heading to Los Angeles. The expected date of arrival is July 30, 2024. The shipment consists of mixed goods, mainly textiles, with a total of 500 pieces. This delivery will be handled through LCL service by Ocean Freight Co.
|
80 |
+
Extracted Information:
|
81 |
+
origin: Shanghai,
|
82 |
+
destination: Los Angeles,
|
83 |
+
expected_shipment_datetime: 2024-07-30 00:00:0000,
|
84 |
+
types_of_service: LCL,
|
85 |
+
warehouse: Ocean Freight Co.,
|
86 |
+
description: Please be advised of a shipment from our supplier in Shanghai heading to Los Angeles. The expected date of arrival is July 30, 2024.,
|
87 |
+
quantities: 500 pieces,
|
88 |
+
carrier_details: Ocean Freight Co.
|
89 |
+
|
90 |
+
3. Email: A new shipment is on its way from Mumbai to London, scheduled to reach by August 22, 2024. This batch contains furniture items, totaling 150 pieces. It is managed by Global Carriers.
|
91 |
+
Extracted Information:
|
92 |
+
origin: Mumbai,
|
93 |
+
destination: London,
|
94 |
+
expected_shipment_datetime: 2024-08-22 00:00:00000,
|
95 |
+
types_of_service: null,
|
96 |
+
warehouse: Global Carriers,
|
97 |
+
description: A new shipment is on its way from Mumbai to London, scheduled to reach by August 22, 2024.,
|
98 |
+
quantities: 150 pieces,
|
99 |
+
carrier_details: Global Carriers
|
100 |
+
|
101 |
+
4. Email: We are notifying you about a shipment dispatched from Tokyo, heading towards Sydney, with an estimated arrival date of September 10, 2024. The cargo includes automotive parts, summing up to 350 units. This shipment will be transported via AIR service, operated by Jet Logistics.
|
102 |
+
Extracted Information:
|
103 |
+
origin: Tokyo,
|
104 |
+
destination: Sydney,
|
105 |
+
expected_shipment_datetime: 2024-09-10 00:00:0000,
|
106 |
+
types_of_service: AIR,
|
107 |
+
warehouse: Jet Logistics,
|
108 |
+
description: We are notifying you about a shipment dispatched from Tokyo, heading towards Sydney, with an estimated arrival date of September 10, 2024.,
|
109 |
+
quantities: 350 units,
|
110 |
+
carrier_details: Jet Logistics
|
111 |
+
|
112 |
+
5. Email: Just a reminder about our meeting the day after at 10 AM.
|
113 |
+
Extracted Information:
|
114 |
+
origin: null,
|
115 |
+
destination: null,
|
116 |
+
expected_shipment_datetime: 0000-00-00 10:00:0000,
|
117 |
+
types_of_service: null,
|
118 |
+
warehouse: null,
|
119 |
+
description: Just a reminder about our meeting the day after at 10 AM.,
|
120 |
+
quantities: null,
|
121 |
+
carrier_details: null
|
122 |
+
|
123 |
+
Output: {output_format}
|
124 |
"""
|
125 |
|
126 |
+
|
127 |
# Function to insert extracted shipment details into MySQL database
|
128 |
def insert_data(extracted_details):
|
129 |
try:
|
|
|
172 |
logger.error(f"Database error: {db_err}")
|
173 |
except Exception as ex:
|
174 |
logger.error(f"Error inserting data: {ex}")
|
175 |
+
|
176 |
+
llm = Llama(model_path='./ggml-model-f16.gguf', n_ctx=2048, n_batch=2048, n_threads= 204)
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def read_email():
|
|
|
179 |
try:
|
180 |
+
df = pd.read_csv('./emails.csv')
|
181 |
+
for i in df['Body']:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
try:
|
183 |
+
prompt_ = f"<s>system:{prompt}<|end|><s>user:{i}<|end|><s>assistant:"
|
184 |
+
output = llm(prompt_, max_tokens=1000, temperature=0.1)
|
185 |
+
print("*"*50)
|
186 |
+
t = output['choices'][0]['text']
|
187 |
+
print('input : ',i)
|
188 |
+
print('output : ',t)
|
189 |
+
t = t[t.find('{\n'):t.find('}\n')+1]
|
190 |
+
print('json data : ', t)
|
191 |
+
extracted_details = json.loads(t)
|
192 |
+
print('extracted json : ',type(extracted_details))
|
193 |
+
print(type(extracted_details))
|
194 |
+
print('_'*50)
|
195 |
|
196 |
+
# print(extracted_details)
|
197 |
+
print(type(extracted_details))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
meta_data = {
|
199 |
+
'sender': 'sender',
|
200 |
+
'receiver': 'receiver',
|
201 |
+
'cc': 'cc',
|
202 |
+
'bcc': 'bcc',
|
203 |
+
'subject': 'subject'
|
204 |
}
|
205 |
+
# print(type(meta_data))
|
206 |
extracted_details.update(meta_data)
|
207 |
+
|
208 |
+
print('full data about email ! ...::',extracted_details)
|
209 |
insert_data(extracted_details)
|
210 |
|
211 |
except Exception as e:
|
212 |
+
print(f"Error processing email ID {i}: {e}")
|
|
|
|
|
|
|
|
|
213 |
except Exception as e:
|
214 |
+
print(f"Error reading csv emails: {e}")
|
215 |
|
216 |
+
|
217 |
+
# Global variables
|
218 |
running = False
|
219 |
+
loop_thread = None
|
220 |
|
221 |
# HTML content for the web interface
|
222 |
html_content = """
|
|
|
238 |
cursor: pointer;
|
239 |
}
|
240 |
button.stop { background-color: #f44336; }
|
241 |
+
#status { font-weight: bold; }
|
242 |
</style>
|
243 |
+
<script>
|
244 |
+
async function startLoop() {
|
245 |
+
const response = await fetch('/start', { method: 'POST' });
|
246 |
+
const result = await response.text();
|
247 |
+
document.getElementById("status").innerHTML = result;
|
248 |
+
}
|
249 |
+
|
250 |
+
async function stopLoop() {
|
251 |
+
const response = await fetch('/stop', { method: 'POST' });
|
252 |
+
const result = await response.text();
|
253 |
+
document.getElementById("status").innerHTML = result;
|
254 |
+
}
|
255 |
+
</script>
|
256 |
</head>
|
257 |
<body>
|
258 |
+
<h1>Email Processing Status: <span id="status">{{ status }}</span></h1>
|
259 |
+
<button onclick="startLoop()">Start</button>
|
260 |
+
<button class="stop" onclick="stopLoop()">Stop</button>
|
261 |
</body>
|
262 |
</html>
|
263 |
"""
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
# Function to process emails in a loop
|
266 |
def email_processing_loop():
|
267 |
global running
|
268 |
+
logging.info("Starting email processing loop...")
|
269 |
+
data = read_email()
|
270 |
+
print("$" * 100) # Simulate email processing
|
271 |
+
time.sleep(10) # Check for new emails every 10 seconds
|
272 |
+
return data
|
273 |
|
274 |
# Endpoint to display the current email processor status
|
275 |
@app.get("/", response_class=HTMLResponse)
|
|
|
277 |
global running
|
278 |
status = "Running" if running else "Stopped"
|
279 |
return HTMLResponse(content=html_content.replace("{{ status }}", status), status_code=200)
|
280 |
+
|
281 |
+
# Endpoint to start the email processing loop
|
282 |
+
@app.post("/start")
|
283 |
+
async def start_email_loop():
|
284 |
global running, loop_thread
|
285 |
+
if not running:
|
286 |
+
running = True
|
287 |
+
# loop_thread = threading.Thread(target=email_processing_loop, daemon=True)
|
288 |
+
# loop_thread.start()
|
289 |
+
logging.info("Email processing loop started.")
|
290 |
+
data = email_processing_loop()
|
291 |
+
return "Running \n\n"+ data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
else:
|
293 |
+
return "Already running \n\n"+data
|
|
|
|
|
|
|
294 |
|
295 |
+
# Endpoint to stop the email processing loop
|
296 |
+
@app.post("/stop")
|
297 |
+
async def stop_email_loop():
|
298 |
+
global running
|
299 |
+
if running:
|
300 |
+
running = False
|
301 |
+
logging.info("Email processing loop stopped.")
|
302 |
+
return "Stopped"
|
303 |
+
else:
|
304 |
+
return "Already stopped"
|
305 |
|
306 |
if __name__ == "__main__":
|
307 |
+
logging.basicConfig(level=logging.INFO)
|
308 |
+
logging.info("Starting FastAPI server...")
|
309 |
+
import uvicorn
|
310 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|