import gradio as gr import os from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline import torch import random import uuid #token = os.getenv("token") #model = gr.load("models/Rojban/dreambooth4", hf_token=token) prj_path = "dreambooth4" model = "stabilityai/stable-diffusion-xl-base-1.0" pipe = DiffusionPipeline.from_pretrained( model, torch_dtype=torch.float16, ) pipe.to("cuda") pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors") refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, ) refiner.to("cuda") def generate_image(prompt, seed=None): if seed is None: seed = 253 seed = int(seed) generator = torch.Generator("cuda").manual_seed(seed) image = pipe(prompt=prompt, generator=generator, num_inference_steps=25).images[0] image = refiner(prompt=prompt, generator=generator, image=image).images[0] name = f"{seed}_{str(uuid.uuid4())}.png" save_path = f"images/{name}" image.save(save_path) return save_path # Create the Gradio interface interface = gr.Interface( fn=generate_image, inputs=[gr.Textbox(label="Prompt"), gr.Number(label="Seed")], outputs=gr.Image(type="filepath"), title="Custom Stable Diffusion Model", description="Generate images using a custom Stable Diffusion model.", ) # Launch the app if __name__ == "__main__": interface.launch()