Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline
|
4 |
import torch
|
|
|
|
|
5 |
|
6 |
-
# Load your custom Stable Diffusion model
|
7 |
token = os.getenv("token")
|
8 |
-
model = gr.load("models/Rojban/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
17 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
18 |
-
torch_dtype=torch.float16,
|
19 |
-
)
|
20 |
-
refiner.to("cuda")
|
21 |
|
|
|
|
|
|
|
22 |
generator = torch.Generator("cuda").manual_seed(seed)
|
23 |
image = pipe(prompt=prompt, generator=generator).images[0]
|
24 |
image = refiner(prompt=prompt, generator=generator, image=image).images[0]
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# Save and return the image
|
27 |
-
image_path = "generated_image.png"
|
28 |
-
image.save(image_path)
|
29 |
-
return image_path
|
30 |
|
31 |
# Create the Gradio interface
|
32 |
interface = gr.Interface(
|
33 |
fn=generate_image,
|
34 |
inputs=[gr.Textbox(label="Prompt"), gr.Number(label="Seed")],
|
35 |
-
outputs=gr.Image(type="
|
36 |
title="Custom Stable Diffusion Model",
|
37 |
-
description="Generate images using a custom Stable Diffusion model."
|
38 |
)
|
39 |
|
40 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
|
4 |
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline
|
5 |
import torch
|
6 |
+
import random
|
7 |
+
import uuid
|
8 |
|
|
|
9 |
token = os.getenv("token")
|
10 |
+
model = gr.load("models/Rojban/dreambooth4", hf_token=token)
|
11 |
+
|
12 |
+
pipe = DiffusionPipeline.from_pretrained(
|
13 |
+
model,
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
)
|
16 |
+
pipe.to("cuda")
|
17 |
+
pipe.load_lora_weights("Rojban/dreambooth4", weight_name="pytorch_lora_weights.safetensors")
|
18 |
|
19 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
20 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
)
|
23 |
+
refiner.to("cuda")
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def generate_image(prompt, seed=None):
|
27 |
+
if seed is None:
|
28 |
+
seed = 253
|
29 |
generator = torch.Generator("cuda").manual_seed(seed)
|
30 |
image = pipe(prompt=prompt, generator=generator).images[0]
|
31 |
image = refiner(prompt=prompt, generator=generator, image=image).images[0]
|
32 |
+
name = f"{seed}_{str(uuid.uuid4())}.png"
|
33 |
+
save_path = f"images/{name}"
|
34 |
+
image.save(save_path)
|
35 |
+
return save_path
|
36 |
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Create the Gradio interface
|
39 |
interface = gr.Interface(
|
40 |
fn=generate_image,
|
41 |
inputs=[gr.Textbox(label="Prompt"), gr.Number(label="Seed")],
|
42 |
+
outputs=gr.Image(type="filepath"),
|
43 |
title="Custom Stable Diffusion Model",
|
44 |
+
description="Generate images using a custom Stable Diffusion model.",
|
45 |
)
|
46 |
|
47 |
# Launch the app
|