Spaces:
Sleeping
Sleeping
import os # added for cache_examples | |
from pathlib import Path | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
from PIL import Image | |
from torch import cuda, device | |
from ultralytics import YOLO | |
# Use GPU if available | |
if cuda.is_available(): | |
device = device("cuda") | |
else: | |
device = device("cpu") | |
TITLE = """<h1 align="center">Supervision Annotator Playground π</h1>""" | |
SUBTITLE = """<h2 align="center">Experiment with Supervision Annotators</h2>""" | |
BANNER = """ | |
<div align="center"> | |
<p> | |
<a align="center" href="https://supervision.roboflow.com/" target="_blank"> | |
<img style="max-width: 50%; height: auto; margin: 0 auto; display: block; padding: 20" | |
src="https://media.roboflow.com/open-source/supervision/rf-supervision-banner.png?updatedAt=1678995927529"> | |
</a> | |
</p> | |
</div> | |
""" # noqa: E501 title/docs | |
DESC = """ | |
<div style="text-align: center; display: flex; justify-content: center; align-items: center;"> | |
<a href="https://huggingface.co./spaces/Roboflow/Annotators?duplicate=true"> | |
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;"> | |
</a> | |
<a href="https://github.com/roboflow/supervision"> | |
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/roboflow/supervision" | |
style="margin-right: 10px;"> | |
</a> | |
<a href="https://colab.research.google.com/github/roboflow/supervision/blob/main/demo.ipynb"> | |
<img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" | |
style="margin-right: 10px;"> | |
</a> | |
</div> | |
""" # noqa: E501 title/docs | |
def load_model(img, model: str | Path = "yolov8s-seg.pt"): | |
# Load model, get results and return detections/labels | |
model = YOLO(model=model) | |
result = model(img, verbose=False, imgsz=1280)[0] | |
detections = sv.Detections.from_ultralytics(result) | |
labels = [ | |
f"{model.model.names[class_id]} {confidence:.2f}" | |
for class_id, confidence in zip(detections.class_id, detections.confidence) | |
] | |
print(labels) | |
return detections, labels | |
def calculate_crop_dim(a, b): | |
# Calculates the crop dimensions of the image resultant | |
if a > b: | |
width = a | |
height = a | |
else: | |
width = b | |
height = b | |
return width, height | |
def annotator( | |
img, | |
model, | |
annotators, | |
colorbb, | |
colormask, | |
colorellipse, | |
colorbc, | |
colorcir, | |
colorlabel, | |
colorhalo, | |
colortri, | |
colordot, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
""" | |
Function that changes the color of annotators | |
Args: | |
annotators: Icon whose color needs to be changed. | |
color: Chosen color with which to edit the input icon in Hex. | |
img: Input image is numpy matrix in BGR. | |
Returns: | |
annotators: annotated image | |
""" | |
img = img[..., ::-1].copy() # BGR to RGB using numpy | |
detections, labels = load_model(img, model) | |
if "Blur" in annotators: | |
# Apply Blur | |
blur_annotator = sv.BlurAnnotator() | |
img = blur_annotator.annotate(img, detections=detections) | |
if "BoundingBox" in annotators: | |
# Draw Boundingbox | |
box_annotator = sv.BoundingBoxAnnotator(sv.Color.from_hex(str(colorbb))) | |
img = box_annotator.annotate(img, detections=detections) | |
if "Mask" in annotators: | |
# Draw Mask | |
mask_annotator = sv.MaskAnnotator(sv.Color.from_hex(str(colormask))) | |
img = mask_annotator.annotate(img, detections=detections) | |
if "Ellipse" in annotators: | |
# Draw Ellipse | |
ellipse_annotator = sv.EllipseAnnotator(sv.Color.from_hex(str(colorellipse))) | |
img = ellipse_annotator.annotate(img, detections=detections) | |
if "BoxCorner" in annotators: | |
# Draw Box corner | |
corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc))) | |
img = corner_annotator.annotate(img, detections=detections) | |
if "Circle" in annotators: | |
# Draw Circle | |
circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir))) | |
img = circle_annotator.annotate(img, detections=detections) | |
if "Label" in annotators: | |
# Draw Label | |
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER) | |
label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel))) | |
img = label_annotator.annotate(img, detections=detections, labels=labels) | |
if "Pixelate" in annotators: | |
# Apply PixelateAnnotator | |
pixelate_annotator = sv.PixelateAnnotator() | |
img = pixelate_annotator.annotate(img, detections=detections) | |
if "Halo" in annotators: | |
# Draw HaloAnnotator | |
halo_annotator = sv.HaloAnnotator(sv.Color.from_hex(str(colorhalo))) | |
img = halo_annotator.annotate(img, detections=detections) | |
if "HeatMap" in annotators: | |
# Draw HeatMapAnnotator | |
heatmap_annotator = sv.HeatMapAnnotator() | |
img = heatmap_annotator.annotate(img, detections=detections) | |
if "Dot" in annotators: | |
# Dot DotAnnotator | |
dot_annotator = sv.DotAnnotator(sv.Color.from_hex(str(colordot))) | |
img = dot_annotator.annotate(img, detections=detections) | |
if "Triangle" in annotators: | |
# Draw TriangleAnnotator | |
tri_annotator = sv.TriangleAnnotator(sv.Color.from_hex(str(colortri))) | |
img = tri_annotator.annotate(img, detections=detections) | |
# crop image for the largest possible square | |
res_img = Image.fromarray(img) | |
# print(type(res_img)) | |
x = 0 | |
y = 0 | |
# print("size of the pil im=", res_img.size) | |
(v1, v2) = res_img.size | |
width, height = calculate_crop_dim(v1, v2) | |
# print(width, height) | |
my_img = np.array(res_img) | |
crop_img = my_img[y : y + height, x : x + width] | |
# print(type(crop_img)) | |
return crop_img[..., ::-1].copy() # BGR to RGB using numpy | |
purple_theme = theme = gr.themes.Soft(primary_hue=gr.themes.colors.purple).set( | |
button_primary_background_fill="*primary_600", | |
button_primary_background_fill_hover="*primary_700", | |
checkbox_label_background_fill_selected="*primary_600", | |
checkbox_background_color_selected="*primary_400", | |
) | |
with gr.Blocks(theme=purple_theme) as app: | |
gr.HTML(TITLE) | |
gr.HTML(SUBTITLE) | |
gr.HTML(BANNER) | |
gr.HTML(DESC) | |
models = gr.Dropdown( | |
[ | |
"yolov8n-seg.pt", | |
"yolov8s-seg.pt", | |
"yolov8m-seg.pt", | |
"yolov8l-seg.pt", | |
"yolov8x-seg.pt", | |
], | |
type="value", | |
value="yolov8s-seg.pt", | |
label="Select Model:", | |
) | |
annotators = gr.CheckboxGroup( | |
choices=[ | |
"BoundingBox", | |
"Mask", | |
"Halo", | |
"Ellipse", | |
"BoxCorner", | |
"Circle", | |
"Label", | |
"Blur", | |
"Pixelate", | |
"HeatMap", | |
"Dot", | |
"Triangle", | |
], | |
value=["BoundingBox", "Mask"], | |
label="Select Annotators:", | |
) | |
gr.Markdown("## Color Picker π¨") | |
with gr.Row(variant="compact"): | |
with gr.Column(): | |
colorbb = gr.ColorPicker(value="#A351FB", label="BoundingBox") | |
colormask = gr.ColorPicker(value="#A351FB", label="Mask") | |
colorellipse = gr.ColorPicker(value="#A351FB", label="Ellipse") | |
with gr.Column(): | |
colorbc = gr.ColorPicker(value="#A351FB", label="BoxCorner") | |
colorcir = gr.ColorPicker(value="#A351FB", label="Circle") | |
colorlabel = gr.ColorPicker(value="#A351FB", label="Label") | |
with gr.Column(): | |
colorhalo = gr.ColorPicker(value="#A351FB", label="Halo") | |
colordot = gr.ColorPicker(value="#A351FB", label="Dot") | |
colortri = gr.ColorPicker(value="#A351FB", label="Triangle") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Input image"): | |
image_input = gr.Image(type="numpy", show_label=False) | |
with gr.Column(): | |
with gr.Tab("Result image"): | |
image_output = gr.Image(type="numpy", show_label=False) | |
image_button = gr.Button(value="Annotate it!", variant="primary") | |
image_button.click( | |
annotator, | |
inputs=[ | |
image_input, | |
models, | |
annotators, | |
colorbb, | |
colormask, | |
colorellipse, | |
colorbc, | |
colorcir, | |
colorlabel, | |
colorhalo, | |
colortri, | |
colordot, | |
], | |
outputs=image_output, | |
) | |
gr.Markdown("## Image Examples πΌοΈ") | |
gr.Examples( | |
examples=[ | |
os.path.join(os.path.abspath(""), "./assets/city.jpg"), | |
os.path.join(os.path.abspath(""), "./assets/household.jpg"), | |
os.path.join(os.path.abspath(""), "./assets/industry.jpg"), | |
os.path.join(os.path.abspath(""), "./assets/retail.jpg"), | |
os.path.join(os.path.abspath(""), "./assets/aerodefence.jpg"), | |
], | |
inputs=image_input, | |
outputs=image_output, | |
fn=annotator, | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
print("Starting app...") | |
print("Dark theme is available at: http://localhost:7860/?__theme=dark") | |
app.launch(debug=False) | |