Annotators / app.py
onuralpszr's picture
feat: πŸš€ tqdm and tqdm tracker added for track tqdm(s)
c90b78a verified
raw
history blame
9.32 kB
import os # added for cache_examples
from pathlib import Path
import gradio as gr
import numpy as np
import supervision as sv
from PIL import Image
from torch import cuda, device
from ultralytics import YOLO
# Use GPU if available
if cuda.is_available():
device = device("cuda")
else:
device = device("cpu")
TITLE = """<h1 align="center">Supervision Annotator Playground πŸš€</h1>"""
SUBTITLE = """<h2 align="center">Experiment with Supervision Annotators</h2>"""
BANNER = """
<div align="center">
<p>
<a align="center" href="https://supervision.roboflow.com/" target="_blank">
<img style="max-width: 50%; height: auto; margin: 0 auto; display: block; padding: 20"
src="https://media.roboflow.com/open-source/supervision/rf-supervision-banner.png?updatedAt=1678995927529">
</a>
</p>
</div>
""" # noqa: E501 title/docs
DESC = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<a href="https://huggingface.co./spaces/Roboflow/Annotators?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
</a>
<a href="https://github.com/roboflow/supervision">
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/roboflow/supervision"
style="margin-right: 10px;">
</a>
<a href="https://colab.research.google.com/github/roboflow/supervision/blob/main/demo.ipynb">
<img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"
style="margin-right: 10px;">
</a>
</div>
""" # noqa: E501 title/docs
def load_model(img, model: str | Path = "yolov8s-seg.pt"):
# Load model, get results and return detections/labels
model = YOLO(model=model)
result = model(img, verbose=False, imgsz=1280)[0]
detections = sv.Detections.from_ultralytics(result)
labels = [
f"{model.model.names[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
print(labels)
return detections, labels
def calculate_crop_dim(a, b):
# Calculates the crop dimensions of the image resultant
if a > b:
width = a
height = a
else:
width = b
height = b
return width, height
def annotator(
img,
model,
annotators,
colorbb,
colormask,
colorellipse,
colorbc,
colorcir,
colorlabel,
colorhalo,
colortri,
colordot,
progress=gr.Progress(track_tqdm=True),
):
"""
Function that changes the color of annotators
Args:
annotators: Icon whose color needs to be changed.
color: Chosen color with which to edit the input icon in Hex.
img: Input image is numpy matrix in BGR.
Returns:
annotators: annotated image
"""
img = img[..., ::-1].copy() # BGR to RGB using numpy
detections, labels = load_model(img, model)
if "Blur" in annotators:
# Apply Blur
blur_annotator = sv.BlurAnnotator()
img = blur_annotator.annotate(img, detections=detections)
if "BoundingBox" in annotators:
# Draw Boundingbox
box_annotator = sv.BoundingBoxAnnotator(sv.Color.from_hex(str(colorbb)))
img = box_annotator.annotate(img, detections=detections)
if "Mask" in annotators:
# Draw Mask
mask_annotator = sv.MaskAnnotator(sv.Color.from_hex(str(colormask)))
img = mask_annotator.annotate(img, detections=detections)
if "Ellipse" in annotators:
# Draw Ellipse
ellipse_annotator = sv.EllipseAnnotator(sv.Color.from_hex(str(colorellipse)))
img = ellipse_annotator.annotate(img, detections=detections)
if "BoxCorner" in annotators:
# Draw Box corner
corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
img = corner_annotator.annotate(img, detections=detections)
if "Circle" in annotators:
# Draw Circle
circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
img = circle_annotator.annotate(img, detections=detections)
if "Label" in annotators:
# Draw Label
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
img = label_annotator.annotate(img, detections=detections, labels=labels)
if "Pixelate" in annotators:
# Apply PixelateAnnotator
pixelate_annotator = sv.PixelateAnnotator()
img = pixelate_annotator.annotate(img, detections=detections)
if "Halo" in annotators:
# Draw HaloAnnotator
halo_annotator = sv.HaloAnnotator(sv.Color.from_hex(str(colorhalo)))
img = halo_annotator.annotate(img, detections=detections)
if "HeatMap" in annotators:
# Draw HeatMapAnnotator
heatmap_annotator = sv.HeatMapAnnotator()
img = heatmap_annotator.annotate(img, detections=detections)
if "Dot" in annotators:
# Dot DotAnnotator
dot_annotator = sv.DotAnnotator(sv.Color.from_hex(str(colordot)))
img = dot_annotator.annotate(img, detections=detections)
if "Triangle" in annotators:
# Draw TriangleAnnotator
tri_annotator = sv.TriangleAnnotator(sv.Color.from_hex(str(colortri)))
img = tri_annotator.annotate(img, detections=detections)
# crop image for the largest possible square
res_img = Image.fromarray(img)
# print(type(res_img))
x = 0
y = 0
# print("size of the pil im=", res_img.size)
(v1, v2) = res_img.size
width, height = calculate_crop_dim(v1, v2)
# print(width, height)
my_img = np.array(res_img)
crop_img = my_img[y : y + height, x : x + width]
# print(type(crop_img))
return crop_img[..., ::-1].copy() # BGR to RGB using numpy
purple_theme = theme = gr.themes.Soft(primary_hue=gr.themes.colors.purple).set(
button_primary_background_fill="*primary_600",
button_primary_background_fill_hover="*primary_700",
checkbox_label_background_fill_selected="*primary_600",
checkbox_background_color_selected="*primary_400",
)
with gr.Blocks(theme=purple_theme) as app:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(BANNER)
gr.HTML(DESC)
models = gr.Dropdown(
[
"yolov8n-seg.pt",
"yolov8s-seg.pt",
"yolov8m-seg.pt",
"yolov8l-seg.pt",
"yolov8x-seg.pt",
],
type="value",
value="yolov8s-seg.pt",
label="Select Model:",
)
annotators = gr.CheckboxGroup(
choices=[
"BoundingBox",
"Mask",
"Halo",
"Ellipse",
"BoxCorner",
"Circle",
"Label",
"Blur",
"Pixelate",
"HeatMap",
"Dot",
"Triangle",
],
value=["BoundingBox", "Mask"],
label="Select Annotators:",
)
gr.Markdown("## Color Picker 🎨")
with gr.Row(variant="compact"):
with gr.Column():
colorbb = gr.ColorPicker(value="#A351FB", label="BoundingBox")
colormask = gr.ColorPicker(value="#A351FB", label="Mask")
colorellipse = gr.ColorPicker(value="#A351FB", label="Ellipse")
with gr.Column():
colorbc = gr.ColorPicker(value="#A351FB", label="BoxCorner")
colorcir = gr.ColorPicker(value="#A351FB", label="Circle")
colorlabel = gr.ColorPicker(value="#A351FB", label="Label")
with gr.Column():
colorhalo = gr.ColorPicker(value="#A351FB", label="Halo")
colordot = gr.ColorPicker(value="#A351FB", label="Dot")
colortri = gr.ColorPicker(value="#A351FB", label="Triangle")
with gr.Row():
with gr.Column():
with gr.Tab("Input image"):
image_input = gr.Image(type="numpy", show_label=False)
with gr.Column():
with gr.Tab("Result image"):
image_output = gr.Image(type="numpy", show_label=False)
image_button = gr.Button(value="Annotate it!", variant="primary")
image_button.click(
annotator,
inputs=[
image_input,
models,
annotators,
colorbb,
colormask,
colorellipse,
colorbc,
colorcir,
colorlabel,
colorhalo,
colortri,
colordot,
],
outputs=image_output,
)
gr.Markdown("## Image Examples πŸ–ΌοΈ")
gr.Examples(
examples=[
os.path.join(os.path.abspath(""), "./assets/city.jpg"),
os.path.join(os.path.abspath(""), "./assets/household.jpg"),
os.path.join(os.path.abspath(""), "./assets/industry.jpg"),
os.path.join(os.path.abspath(""), "./assets/retail.jpg"),
os.path.join(os.path.abspath(""), "./assets/aerodefence.jpg"),
],
inputs=image_input,
outputs=image_output,
fn=annotator,
cache_examples=False,
)
if __name__ == "__main__":
print("Starting app...")
print("Dark theme is available at: http://localhost:7860/?__theme=dark")
app.launch(debug=False)