File size: 9,228 Bytes
7183f64
7e9d826
7183f64
aad4b76
7183f64
aad4b76
7183f64
 
aad4b76
 
7183f64
 
 
 
 
aad4b76
7183f64
8f4be85
 
b4d0ce4
 
 
 
 
 
 
 
 
 
 
8f4be85
 
 
 
b4d0ce4
 
 
 
 
 
 
 
8f4be85
b4da4e7
 
8f4be85
7e9d826
7183f64
7e9d826
7183f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e9d826
7183f64
 
 
 
 
 
 
 
b4da4e7
7e9d826
7183f64
aad4b76
 
 
 
 
 
 
 
 
 
7183f64
aad4b76
7e9d826
aad4b76
 
 
 
 
 
 
7e9d826
aad4b76
 
 
 
 
 
 
 
 
7e9d826
aad4b76
 
 
 
 
 
 
 
7183f64
7e9d826
aad4b76
 
 
 
 
 
 
 
 
7183f64
7e9d826
7183f64
 
aad4b76
7183f64
 
 
 
aad4b76
7183f64
 
 
 
b4da4e7
7183f64
7e9d826
 
7183f64
b4da4e7
7183f64
 
 
 
aad4b76
7183f64
 
 
 
 
aad4b76
7183f64
 
aad4b76
7183f64
aad4b76
 
7183f64
 
aad4b76
7183f64
aad4b76
 
7183f64
 
 
 
 
 
 
 
8f4be85
 
b4d0ce4
 
7e9d826
 
 
 
 
 
 
 
 
 
 
 
 
 
7183f64
 
 
 
 
 
 
 
 
 
 
 
 
b4da4e7
7183f64
 
 
 
aad4b76
7183f64
 
aad4b76
7183f64
 
 
aad4b76
7183f64
 
 
 
 
 
 
 
aad4b76
7183f64
 
 
 
 
 
aad4b76
 
7183f64
 
 
 
7e9d826
7183f64
 
 
 
 
 
 
 
 
7e9d826
7183f64
 
 
aad4b76
 
 
7183f64
 
 
 
 
 
 
aad4b76
 
 
 
 
 
 
7183f64
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os  # added for cache_examples
from pathlib import Path

import gradio as gr
import numpy as np
import supervision as sv
from PIL import Image
from torch import cuda, device
from ultralytics import YOLO

# Use GPU if available
if cuda.is_available():
    device = device("cuda")
else:
    device = device("cpu")


TITLE = """<h1 align="center">Supervision Annotator Playground 🚀</h1>"""
SUBTITLE = """<h2 align="center">Experiment with Supervision Annotators</h2>"""
BANNER = """
<div align="center">
    <p>
        <a align="center" href="https://supervision.roboflow.com/" target="_blank">
            <img style="max-width: 50%; height: auto; margin: 0 auto; display: block; padding: 20"
                src="https://media.roboflow.com/open-source/supervision/rf-supervision-banner.png?updatedAt=1678995927529">
        </a>
    </p>
</div>
"""  # noqa: E501 title/docs
DESC = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
    <a href="https://huggingface.co./spaces/Roboflow/Annotators?duplicate=true">
        <img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
    </a>
    <a href="https://github.com/roboflow/supervision">
        <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/roboflow/supervision"
            style="margin-right: 10px;">
    </a>
    <a href="https://colab.research.google.com/github/roboflow/supervision/blob/main/demo.ipynb">
        <img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"
            style="margin-right: 10px;">
    </a>
</div>
"""  # noqa: E501 title/docs


def load_model(img, model: str | Path = "yolov8s-seg.pt"):
    # Load model, get results and return detections/labels
    model = YOLO(model=model)
    result = model(img, verbose=False, imgsz=1280)[0]
    detections = sv.Detections.from_ultralytics(result)
    labels = [
        f"{model.model.names[class_id]} {confidence:.2f}"
        for class_id, confidence in zip(detections.class_id, detections.confidence)
    ]

    print(labels)
    return detections, labels


def calculate_crop_dim(a, b):
    # Calculates the crop dimensions of the image resultant
    if a > b:
        width = a
        height = a
    else:
        width = b
        height = b

    return width, height


def annotator(
    img,
    model,
    annotators,
    colorbb,
    colormask,
    colorellipse,
    colorbc,
    colorcir,
    colorlabel,
    colorhalo,
    colortri,
    colordot,
):
    """
    Function that changes the color of annotators
    Args:
        annotators: Icon whose color needs to be changed.
        color: Chosen color with which to edit the input icon in Hex.
        img: Input image is numpy matrix in BGR.
    Returns:
        annotators: annotated image
    """

    img = img[..., ::-1].copy()  # BGR to RGB using numpy

    detections, labels = load_model(img, model)

    if "Blur" in annotators:
        # Apply Blur
        blur_annotator = sv.BlurAnnotator()
        img = blur_annotator.annotate(img, detections=detections)

    if "BoundingBox" in annotators:
        # Draw Boundingbox
        box_annotator = sv.BoundingBoxAnnotator(sv.Color.from_hex(str(colorbb)))
        img = box_annotator.annotate(img, detections=detections)

    if "Mask" in annotators:
        # Draw Mask
        mask_annotator = sv.MaskAnnotator(sv.Color.from_hex(str(colormask)))
        img = mask_annotator.annotate(img, detections=detections)

    if "Ellipse" in annotators:
        # Draw Ellipse
        ellipse_annotator = sv.EllipseAnnotator(sv.Color.from_hex(str(colorellipse)))
        img = ellipse_annotator.annotate(img, detections=detections)

    if "BoxCorner" in annotators:
        # Draw Box corner
        corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
        img = corner_annotator.annotate(img, detections=detections)

    if "Circle" in annotators:
        # Draw Circle
        circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
        img = circle_annotator.annotate(img, detections=detections)

    if "Label" in annotators:
        # Draw Label
        label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
        label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
        img = label_annotator.annotate(img, detections=detections, labels=labels)

    if "Pixelate" in annotators:
        # Apply PixelateAnnotator
        pixelate_annotator = sv.PixelateAnnotator()
        img = pixelate_annotator.annotate(img, detections=detections)

    if "Halo" in annotators:
        # Draw HaloAnnotator
        halo_annotator = sv.HaloAnnotator(sv.Color.from_hex(str(colorhalo)))
        img = halo_annotator.annotate(img, detections=detections)

    if "HeatMap" in annotators:
        # Draw HeatMapAnnotator
        heatmap_annotator = sv.HeatMapAnnotator()
        img = heatmap_annotator.annotate(img, detections=detections)

    if "Dot" in annotators:
        # Dot DotAnnotator
        dot_annotator = sv.DotAnnotator(sv.Color.from_hex(str(colordot)))
        img = dot_annotator.annotate(img, detections=detections)

    if "Triangle" in annotators:
        # Draw TriangleAnnotator
        tri_annotator = sv.TriangleAnnotator(sv.Color.from_hex(str(colortri)))
        img = tri_annotator.annotate(img, detections=detections)

    # crop image for the largest possible square
    res_img = Image.fromarray(img)
    # print(type(res_img))
    x = 0
    y = 0

    # print("size of the pil im=", res_img.size)
    (v1, v2) = res_img.size
    width, height = calculate_crop_dim(v1, v2)
    # print(width, height)
    my_img = np.array(res_img)

    crop_img = my_img[y : y + height, x : x + width]
    # print(type(crop_img))

    return crop_img[..., ::-1].copy()  # BGR to RGB using numpy


purple_theme = theme = gr.themes.Soft(primary_hue=gr.themes.colors.purple).set(
    button_primary_background_fill="*primary_600",
    button_primary_background_fill_hover="*primary_700",
    checkbox_label_background_fill_selected="*primary_600",
    checkbox_background_color_selected="*primary_400",
)

with gr.Blocks(theme=purple_theme) as app:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(BANNER)
    gr.HTML(DESC)

    models = gr.Dropdown(
        [
            "yolov8n-seg.pt",
            "yolov8s-seg.pt",
            "yolov8m-seg.pt",
            "yolov8l-seg.pt",
            "yolov8x-seg.pt",
        ],
        type="value",
        value="yolov8s-seg.pt",
        label="Select Model:",
    )

    annotators = gr.CheckboxGroup(
        choices=[
            "BoundingBox",
            "Mask",
            "Halo",
            "Ellipse",
            "BoxCorner",
            "Circle",
            "Label",
            "Blur",
            "Pixelate",
            "HeatMap",
            "Dot",
            "Triangle",
        ],
        value=["BoundingBox", "Mask"],
        label="Select Annotators:",
    )

    gr.Markdown("🎨 **Color Picker**")
    with gr.Row(variant="compact"):
        with gr.Column():
            colorbb = gr.ColorPicker(value="#A351FB", label="BoundingBox")
            colormask = gr.ColorPicker(value="#A351FB", label="Mask")
            colorellipse = gr.ColorPicker(value="#A351FB", label="Ellipse")
        with gr.Column():
            colorbc = gr.ColorPicker(value="#A351FB", label="BoxCorner")
            colorcir = gr.ColorPicker(value="#A351FB", label="Circle")
            colorlabel = gr.ColorPicker(value="#A351FB", label="Label")
        with gr.Column():
            colorhalo = gr.ColorPicker(value="#A351FB", label="Halo")
            colordot = gr.ColorPicker(value="#A351FB", label="Dot")
            colortri = gr.ColorPicker(value="#A351FB", label="Triangle")

    with gr.Row():
        with gr.Column():
            with gr.Tab("Input image"):
                image_input = gr.Image(type="numpy", show_label=False)
        with gr.Column():
            with gr.Tab("Result image"):
                image_output = gr.Image(type="numpy", show_label=False)
    image_button = gr.Button(value="Annotate it!", variant="primary")

    image_button.click(
        annotator,
        inputs=[
            image_input,
            models,
            annotators,
            colorbb,
            colormask,
            colorellipse,
            colorbc,
            colorcir,
            colorlabel,
            colorhalo,
            colortri,
            colordot,
        ],
        outputs=image_output,
    )

    gr.Markdown("## Image Examples")
    gr.Examples(
        examples=[
            os.path.join(os.path.abspath(""), "city.jpg"),
            os.path.join(os.path.abspath(""), "household.jpg"),
            os.path.join(os.path.abspath(""), "industry.jpg"),
            os.path.join(os.path.abspath(""), "retail.jpg"),
            os.path.join(os.path.abspath(""), "aerodefence.jpg"),
        ],
        inputs=image_input,
        outputs=image_output,
        fn=annotator,
        cache_examples=False,
    )


if __name__ == "__main__":
    print("Starting app...")
    print("Dark theme is available at: http://localhost:7860/?__theme=dark")
    app.launch(debug=False)