Spaces:
Sleeping
Sleeping
File size: 9,228 Bytes
7183f64 7e9d826 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 8f4be85 b4d0ce4 8f4be85 b4d0ce4 8f4be85 b4da4e7 8f4be85 7e9d826 7183f64 7e9d826 7183f64 7e9d826 7183f64 b4da4e7 7e9d826 7183f64 aad4b76 7183f64 aad4b76 7e9d826 aad4b76 7e9d826 aad4b76 7e9d826 aad4b76 7183f64 7e9d826 aad4b76 7183f64 7e9d826 7183f64 aad4b76 7183f64 aad4b76 7183f64 b4da4e7 7183f64 7e9d826 7183f64 b4da4e7 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 8f4be85 b4d0ce4 7e9d826 7183f64 b4da4e7 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 aad4b76 7183f64 7e9d826 7183f64 7e9d826 7183f64 aad4b76 7183f64 aad4b76 7183f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os # added for cache_examples
from pathlib import Path
import gradio as gr
import numpy as np
import supervision as sv
from PIL import Image
from torch import cuda, device
from ultralytics import YOLO
# Use GPU if available
if cuda.is_available():
device = device("cuda")
else:
device = device("cpu")
TITLE = """<h1 align="center">Supervision Annotator Playground 🚀</h1>"""
SUBTITLE = """<h2 align="center">Experiment with Supervision Annotators</h2>"""
BANNER = """
<div align="center">
<p>
<a align="center" href="https://supervision.roboflow.com/" target="_blank">
<img style="max-width: 50%; height: auto; margin: 0 auto; display: block; padding: 20"
src="https://media.roboflow.com/open-source/supervision/rf-supervision-banner.png?updatedAt=1678995927529">
</a>
</p>
</div>
""" # noqa: E501 title/docs
DESC = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<a href="https://huggingface.co./spaces/Roboflow/Annotators?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
</a>
<a href="https://github.com/roboflow/supervision">
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/roboflow/supervision"
style="margin-right: 10px;">
</a>
<a href="https://colab.research.google.com/github/roboflow/supervision/blob/main/demo.ipynb">
<img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"
style="margin-right: 10px;">
</a>
</div>
""" # noqa: E501 title/docs
def load_model(img, model: str | Path = "yolov8s-seg.pt"):
# Load model, get results and return detections/labels
model = YOLO(model=model)
result = model(img, verbose=False, imgsz=1280)[0]
detections = sv.Detections.from_ultralytics(result)
labels = [
f"{model.model.names[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
print(labels)
return detections, labels
def calculate_crop_dim(a, b):
# Calculates the crop dimensions of the image resultant
if a > b:
width = a
height = a
else:
width = b
height = b
return width, height
def annotator(
img,
model,
annotators,
colorbb,
colormask,
colorellipse,
colorbc,
colorcir,
colorlabel,
colorhalo,
colortri,
colordot,
):
"""
Function that changes the color of annotators
Args:
annotators: Icon whose color needs to be changed.
color: Chosen color with which to edit the input icon in Hex.
img: Input image is numpy matrix in BGR.
Returns:
annotators: annotated image
"""
img = img[..., ::-1].copy() # BGR to RGB using numpy
detections, labels = load_model(img, model)
if "Blur" in annotators:
# Apply Blur
blur_annotator = sv.BlurAnnotator()
img = blur_annotator.annotate(img, detections=detections)
if "BoundingBox" in annotators:
# Draw Boundingbox
box_annotator = sv.BoundingBoxAnnotator(sv.Color.from_hex(str(colorbb)))
img = box_annotator.annotate(img, detections=detections)
if "Mask" in annotators:
# Draw Mask
mask_annotator = sv.MaskAnnotator(sv.Color.from_hex(str(colormask)))
img = mask_annotator.annotate(img, detections=detections)
if "Ellipse" in annotators:
# Draw Ellipse
ellipse_annotator = sv.EllipseAnnotator(sv.Color.from_hex(str(colorellipse)))
img = ellipse_annotator.annotate(img, detections=detections)
if "BoxCorner" in annotators:
# Draw Box corner
corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
img = corner_annotator.annotate(img, detections=detections)
if "Circle" in annotators:
# Draw Circle
circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
img = circle_annotator.annotate(img, detections=detections)
if "Label" in annotators:
# Draw Label
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
img = label_annotator.annotate(img, detections=detections, labels=labels)
if "Pixelate" in annotators:
# Apply PixelateAnnotator
pixelate_annotator = sv.PixelateAnnotator()
img = pixelate_annotator.annotate(img, detections=detections)
if "Halo" in annotators:
# Draw HaloAnnotator
halo_annotator = sv.HaloAnnotator(sv.Color.from_hex(str(colorhalo)))
img = halo_annotator.annotate(img, detections=detections)
if "HeatMap" in annotators:
# Draw HeatMapAnnotator
heatmap_annotator = sv.HeatMapAnnotator()
img = heatmap_annotator.annotate(img, detections=detections)
if "Dot" in annotators:
# Dot DotAnnotator
dot_annotator = sv.DotAnnotator(sv.Color.from_hex(str(colordot)))
img = dot_annotator.annotate(img, detections=detections)
if "Triangle" in annotators:
# Draw TriangleAnnotator
tri_annotator = sv.TriangleAnnotator(sv.Color.from_hex(str(colortri)))
img = tri_annotator.annotate(img, detections=detections)
# crop image for the largest possible square
res_img = Image.fromarray(img)
# print(type(res_img))
x = 0
y = 0
# print("size of the pil im=", res_img.size)
(v1, v2) = res_img.size
width, height = calculate_crop_dim(v1, v2)
# print(width, height)
my_img = np.array(res_img)
crop_img = my_img[y : y + height, x : x + width]
# print(type(crop_img))
return crop_img[..., ::-1].copy() # BGR to RGB using numpy
purple_theme = theme = gr.themes.Soft(primary_hue=gr.themes.colors.purple).set(
button_primary_background_fill="*primary_600",
button_primary_background_fill_hover="*primary_700",
checkbox_label_background_fill_selected="*primary_600",
checkbox_background_color_selected="*primary_400",
)
with gr.Blocks(theme=purple_theme) as app:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(BANNER)
gr.HTML(DESC)
models = gr.Dropdown(
[
"yolov8n-seg.pt",
"yolov8s-seg.pt",
"yolov8m-seg.pt",
"yolov8l-seg.pt",
"yolov8x-seg.pt",
],
type="value",
value="yolov8s-seg.pt",
label="Select Model:",
)
annotators = gr.CheckboxGroup(
choices=[
"BoundingBox",
"Mask",
"Halo",
"Ellipse",
"BoxCorner",
"Circle",
"Label",
"Blur",
"Pixelate",
"HeatMap",
"Dot",
"Triangle",
],
value=["BoundingBox", "Mask"],
label="Select Annotators:",
)
gr.Markdown("🎨 **Color Picker**")
with gr.Row(variant="compact"):
with gr.Column():
colorbb = gr.ColorPicker(value="#A351FB", label="BoundingBox")
colormask = gr.ColorPicker(value="#A351FB", label="Mask")
colorellipse = gr.ColorPicker(value="#A351FB", label="Ellipse")
with gr.Column():
colorbc = gr.ColorPicker(value="#A351FB", label="BoxCorner")
colorcir = gr.ColorPicker(value="#A351FB", label="Circle")
colorlabel = gr.ColorPicker(value="#A351FB", label="Label")
with gr.Column():
colorhalo = gr.ColorPicker(value="#A351FB", label="Halo")
colordot = gr.ColorPicker(value="#A351FB", label="Dot")
colortri = gr.ColorPicker(value="#A351FB", label="Triangle")
with gr.Row():
with gr.Column():
with gr.Tab("Input image"):
image_input = gr.Image(type="numpy", show_label=False)
with gr.Column():
with gr.Tab("Result image"):
image_output = gr.Image(type="numpy", show_label=False)
image_button = gr.Button(value="Annotate it!", variant="primary")
image_button.click(
annotator,
inputs=[
image_input,
models,
annotators,
colorbb,
colormask,
colorellipse,
colorbc,
colorcir,
colorlabel,
colorhalo,
colortri,
colordot,
],
outputs=image_output,
)
gr.Markdown("## Image Examples")
gr.Examples(
examples=[
os.path.join(os.path.abspath(""), "city.jpg"),
os.path.join(os.path.abspath(""), "household.jpg"),
os.path.join(os.path.abspath(""), "industry.jpg"),
os.path.join(os.path.abspath(""), "retail.jpg"),
os.path.join(os.path.abspath(""), "aerodefence.jpg"),
],
inputs=image_input,
outputs=image_output,
fn=annotator,
cache_examples=False,
)
if __name__ == "__main__":
print("Starting app...")
print("Dark theme is available at: http://localhost:7860/?__theme=dark")
app.launch(debug=False)
|