File size: 71,366 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
import copy
import inspect

import mmcv
import numpy as np
from numpy import random

from mmdet.core import PolygonMasks
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps
from ..builder import PIPELINES

try:
    from imagecorruptions import corrupt
except ImportError:
    corrupt = None

try:
    import albumentations
    from albumentations import Compose
except ImportError:
    albumentations = None
    Compose = None


@PIPELINES.register_module()
class Resize(object):
    """Resize images & bbox & mask.

    This transform resizes the input image to some scale. Bboxes and masks are
    then resized with the same scale factor. If the input dict contains the key
    "scale", then the scale in the input dict is used, otherwise the specified
    scale in the init method is used. If the input dict contains the key
    "scale_factor" (if MultiScaleFlipAug does not give img_scale but
    scale_factor), the actual scale will be computed by image shape and
    scale_factor.

    `img_scale` can either be a tuple (single-scale) or a list of tuple
    (multi-scale). There are 3 multiscale modes:

    - ``ratio_range is not None``: randomly sample a ratio from the ratio \
      range and multiply it with the image scale.
    - ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \
      sample a scale from the multiscale range.
    - ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \
      sample a scale from multiple scales.

    Args:
        img_scale (tuple or list[tuple]): Images scales for resizing.
        multiscale_mode (str): Either "range" or "value".
        ratio_range (tuple[float]): (min_ratio, max_ratio)
        keep_ratio (bool): Whether to keep the aspect ratio when resizing the
            image.
        bbox_clip_border (bool, optional): Whether clip the objects outside
            the border of the image. Defaults to True.
        backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
            These two backends generates slightly different results. Defaults
            to 'cv2'.
        override (bool, optional): Whether to override `scale` and
            `scale_factor` so as to call resize twice. Default False. If True,
            after the first resizing, the existed `scale` and `scale_factor`
            will be ignored so the second resizing can be allowed.
            This option is a work-around for multiple times of resize in DETR.
            Defaults to False.
    """

    def __init__(self,
                 img_scale=None,
                 multiscale_mode='range',
                 ratio_range=None,
                 keep_ratio=True,
                 bbox_clip_border=True,
                 backend='cv2',
                 override=False):
        if img_scale is None:
            self.img_scale = None
        else:
            if isinstance(img_scale, list):
                self.img_scale = img_scale
            else:
                self.img_scale = [img_scale]
            assert mmcv.is_list_of(self.img_scale, tuple)

        if ratio_range is not None:
            # mode 1: given a scale and a range of image ratio
            assert len(self.img_scale) == 1
        else:
            # mode 2: given multiple scales or a range of scales
            assert multiscale_mode in ['value', 'range']

        self.backend = backend
        self.multiscale_mode = multiscale_mode
        self.ratio_range = ratio_range
        self.keep_ratio = keep_ratio
        # TODO: refactor the override option in Resize
        self.override = override
        self.bbox_clip_border = bbox_clip_border

    @staticmethod
    def random_select(img_scales):
        """Randomly select an img_scale from given candidates.

        Args:
            img_scales (list[tuple]): Images scales for selection.

        Returns:
            (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \
                where ``img_scale`` is the selected image scale and \
                ``scale_idx`` is the selected index in the given candidates.
        """

        assert mmcv.is_list_of(img_scales, tuple)
        scale_idx = np.random.randint(len(img_scales))
        img_scale = img_scales[scale_idx]
        return img_scale, scale_idx

    @staticmethod
    def random_sample(img_scales):
        """Randomly sample an img_scale when ``multiscale_mode=='range'``.

        Args:
            img_scales (list[tuple]): Images scale range for sampling.
                There must be two tuples in img_scales, which specify the lower
                and upper bound of image scales.

        Returns:
            (tuple, None): Returns a tuple ``(img_scale, None)``, where \
                ``img_scale`` is sampled scale and None is just a placeholder \
                to be consistent with :func:`random_select`.
        """

        assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2
        img_scale_long = [max(s) for s in img_scales]
        img_scale_short = [min(s) for s in img_scales]
        long_edge = np.random.randint(
            min(img_scale_long),
            max(img_scale_long) + 1)
        short_edge = np.random.randint(
            min(img_scale_short),
            max(img_scale_short) + 1)
        img_scale = (long_edge, short_edge)
        return img_scale, None

    @staticmethod
    def random_sample_ratio(img_scale, ratio_range):
        """Randomly sample an img_scale when ``ratio_range`` is specified.

        A ratio will be randomly sampled from the range specified by
        ``ratio_range``. Then it would be multiplied with ``img_scale`` to
        generate sampled scale.

        Args:
            img_scale (tuple): Images scale base to multiply with ratio.
            ratio_range (tuple[float]): The minimum and maximum ratio to scale
                the ``img_scale``.

        Returns:
            (tuple, None): Returns a tuple ``(scale, None)``, where \
                ``scale`` is sampled ratio multiplied with ``img_scale`` and \
                None is just a placeholder to be consistent with \
                :func:`random_select`.
        """

        assert isinstance(img_scale, tuple) and len(img_scale) == 2
        min_ratio, max_ratio = ratio_range
        assert min_ratio <= max_ratio
        ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio
        scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio)
        return scale, None

    def _random_scale(self, results):
        """Randomly sample an img_scale according to ``ratio_range`` and
        ``multiscale_mode``.

        If ``ratio_range`` is specified, a ratio will be sampled and be
        multiplied with ``img_scale``.
        If multiple scales are specified by ``img_scale``, a scale will be
        sampled according to ``multiscale_mode``.
        Otherwise, single scale will be used.

        Args:
            results (dict): Result dict from :obj:`dataset`.

        Returns:
            dict: Two new keys 'scale` and 'scale_idx` are added into \
                ``results``, which would be used by subsequent pipelines.
        """

        if self.ratio_range is not None:
            scale, scale_idx = self.random_sample_ratio(
                self.img_scale[0], self.ratio_range)
        elif len(self.img_scale) == 1:
            scale, scale_idx = self.img_scale[0], 0
        elif self.multiscale_mode == 'range':
            scale, scale_idx = self.random_sample(self.img_scale)
        elif self.multiscale_mode == 'value':
            scale, scale_idx = self.random_select(self.img_scale)
        else:
            raise NotImplementedError

        results['scale'] = scale
        results['scale_idx'] = scale_idx

    def _resize_img(self, results):
        """Resize images with ``results['scale']``."""
        for key in results.get('img_fields', ['img']):
            if self.keep_ratio:
                img, scale_factor = mmcv.imrescale(
                    results[key],
                    results['scale'],
                    return_scale=True,
                    backend=self.backend)
                # the w_scale and h_scale has minor difference
                # a real fix should be done in the mmcv.imrescale in the future
                new_h, new_w = img.shape[:2]
                h, w = results[key].shape[:2]
                w_scale = new_w / w
                h_scale = new_h / h
            else:
                img, w_scale, h_scale = mmcv.imresize(
                    results[key],
                    results['scale'],
                    return_scale=True,
                    backend=self.backend)
            results[key] = img

            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
            results['img_shape'] = img.shape
            # in case that there is no padding
            results['pad_shape'] = img.shape
            results['scale_factor'] = scale_factor
            results['keep_ratio'] = self.keep_ratio

    def _resize_bboxes(self, results):
        """Resize bounding boxes with ``results['scale_factor']``."""
        for key in results.get('bbox_fields', []):
            bboxes = results[key] * results['scale_factor']
            if self.bbox_clip_border:
                img_shape = results['img_shape']
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            results[key] = bboxes

    def _resize_masks(self, results):
        """Resize masks with ``results['scale']``"""
        for key in results.get('mask_fields', []):
            if results[key] is None:
                continue
            if self.keep_ratio:
                results[key] = results[key].rescale(results['scale'])
            else:
                results[key] = results[key].resize(results['img_shape'][:2])

    def _resize_seg(self, results):
        """Resize semantic segmentation map with ``results['scale']``."""
        for key in results.get('seg_fields', []):
            if self.keep_ratio:
                gt_seg = mmcv.imrescale(
                    results[key],
                    results['scale'],
                    interpolation='nearest',
                    backend=self.backend)
            else:
                gt_seg = mmcv.imresize(
                    results[key],
                    results['scale'],
                    interpolation='nearest',
                    backend=self.backend)
            results['gt_semantic_seg'] = gt_seg

    def __call__(self, results):
        """Call function to resize images, bounding boxes, masks, semantic
        segmentation map.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \
                'keep_ratio' keys are added into result dict.
        """

        if 'scale' not in results:
            if 'scale_factor' in results:
                img_shape = results['img'].shape[:2]
                scale_factor = results['scale_factor']
                assert isinstance(scale_factor, float)
                results['scale'] = tuple(
                    [int(x * scale_factor) for x in img_shape][::-1])
            else:
                self._random_scale(results)
        else:
            if not self.override:
                assert 'scale_factor' not in results, (
                    'scale and scale_factor cannot be both set.')
            else:
                results.pop('scale')
                if 'scale_factor' in results:
                    results.pop('scale_factor')
                self._random_scale(results)

        self._resize_img(results)
        self._resize_bboxes(results)
        self._resize_masks(results)
        self._resize_seg(results)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'multiscale_mode={self.multiscale_mode}, '
        repr_str += f'ratio_range={self.ratio_range}, '
        repr_str += f'keep_ratio={self.keep_ratio}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class RandomFlip(object):
    """Flip the image & bbox & mask.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    When random flip is enabled, ``flip_ratio``/``direction`` can either be a
    float/string or tuple of float/string. There are 3 flip modes:

    - ``flip_ratio`` is float, ``direction`` is string: the image will be
        ``direction``ly flipped with probability of ``flip_ratio`` .
        E.g., ``flip_ratio=0.5``, ``direction='horizontal'``,
        then image will be horizontally flipped with probability of 0.5.
    - ``flip_ratio`` is float, ``direction`` is list of string: the image wil
        be ``direction[i]``ly flipped with probability of
        ``flip_ratio/len(direction)``.
        E.g., ``flip_ratio=0.5``, ``direction=['horizontal', 'vertical']``,
        then image will be horizontally flipped with probability of 0.25,
        vertically with probability of 0.25.
    - ``flip_ratio`` is list of float, ``direction`` is list of string:
        given ``len(flip_ratio) == len(direction)``, the image wil
        be ``direction[i]``ly flipped with probability of ``flip_ratio[i]``.
        E.g., ``flip_ratio=[0.3, 0.5]``, ``direction=['horizontal',
        'vertical']``, then image will be horizontally flipped with probability
         of 0.3, vertically with probability of 0.5

    Args:
        flip_ratio (float | list[float], optional): The flipping probability.
            Default: None.
        direction(str | list[str], optional): The flipping direction. Options
            are 'horizontal', 'vertical', 'diagonal'. Default: 'horizontal'.
            If input is a list, the length must equal ``flip_ratio``. Each
            element in ``flip_ratio`` indicates the flip probability of
            corresponding direction.
    """

    def __init__(self, flip_ratio=None, direction='horizontal'):
        if isinstance(flip_ratio, list):
            assert mmcv.is_list_of(flip_ratio, float)
            assert 0 <= sum(flip_ratio) <= 1
        elif isinstance(flip_ratio, float):
            assert 0 <= flip_ratio <= 1
        elif flip_ratio is None:
            pass
        else:
            raise ValueError('flip_ratios must be None, float, '
                             'or list of float')
        self.flip_ratio = flip_ratio

        valid_directions = ['horizontal', 'vertical', 'diagonal']
        if isinstance(direction, str):
            assert direction in valid_directions
        elif isinstance(direction, list):
            assert mmcv.is_list_of(direction, str)
            assert set(direction).issubset(set(valid_directions))
        else:
            raise ValueError('direction must be either str or list of str')
        self.direction = direction

        if isinstance(flip_ratio, list):
            assert len(self.flip_ratio) == len(self.direction)

    def bbox_flip(self, bboxes, img_shape, direction):
        """Flip bboxes horizontally.

        Args:
            bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k)
            img_shape (tuple[int]): Image shape (height, width)
            direction (str): Flip direction. Options are 'horizontal',
                'vertical'.

        Returns:
            numpy.ndarray: Flipped bounding boxes.
        """

        assert bboxes.shape[-1] % 4 == 0
        flipped = bboxes.copy()
        if direction == 'horizontal':
            w = img_shape[1]
            flipped[..., 0::4] = w - bboxes[..., 2::4]
            flipped[..., 2::4] = w - bboxes[..., 0::4]
        elif direction == 'vertical':
            h = img_shape[0]
            flipped[..., 1::4] = h - bboxes[..., 3::4]
            flipped[..., 3::4] = h - bboxes[..., 1::4]
        elif direction == 'diagonal':
            w = img_shape[1]
            h = img_shape[0]
            flipped[..., 0::4] = w - bboxes[..., 2::4]
            flipped[..., 1::4] = h - bboxes[..., 3::4]
            flipped[..., 2::4] = w - bboxes[..., 0::4]
            flipped[..., 3::4] = h - bboxes[..., 1::4]
        else:
            raise ValueError(f"Invalid flipping direction '{direction}'")
        return flipped

    def __call__(self, results):
        """Call function to flip bounding boxes, masks, semantic segmentation
        maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction' keys are added \
                into result dict.
        """

        if 'flip' not in results:
            if isinstance(self.direction, list):
                # None means non-flip
                direction_list = self.direction + [None]
            else:
                # None means non-flip
                direction_list = [self.direction, None]

            if isinstance(self.flip_ratio, list):
                non_flip_ratio = 1 - sum(self.flip_ratio)
                flip_ratio_list = self.flip_ratio + [non_flip_ratio]
            else:
                non_flip_ratio = 1 - self.flip_ratio
                # exclude non-flip
                single_ratio = self.flip_ratio / (len(direction_list) - 1)
                flip_ratio_list = [single_ratio] * (len(direction_list) -
                                                    1) + [non_flip_ratio]

            cur_dir = np.random.choice(direction_list, p=flip_ratio_list)

            results['flip'] = cur_dir is not None
        if 'flip_direction' not in results:
            results['flip_direction'] = cur_dir
        if results['flip']:
            # flip image
            for key in results.get('img_fields', ['img']):
                results[key] = mmcv.imflip(
                    results[key], direction=results['flip_direction'])
            # flip bboxes
            for key in results.get('bbox_fields', []):
                results[key] = self.bbox_flip(results[key],
                                              results['img_shape'],
                                              results['flip_direction'])
            # flip masks
            for key in results.get('mask_fields', []):
                results[key] = results[key].flip(results['flip_direction'])

            # flip segs
            for key in results.get('seg_fields', []):
                results[key] = mmcv.imflip(
                    results[key], direction=results['flip_direction'])
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(flip_ratio={self.flip_ratio})'


@PIPELINES.register_module()
class Pad(object):
    """Pad the image & mask.

    There are two padding modes: (1) pad to a fixed size and (2) pad to the
    minimum size that is divisible by some number.
    Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor",

    Args:
        size (tuple, optional): Fixed padding size.
        size_divisor (int, optional): The divisor of padded size.
        pad_val (float, optional): Padding value, 0 by default.
    """

    def __init__(self, size=None, size_divisor=None, pad_val=0):
        self.size = size
        self.size_divisor = size_divisor
        self.pad_val = pad_val
        # only one of size and size_divisor should be valid
        assert size is not None or size_divisor is not None
        assert size is None or size_divisor is None

    def _pad_img(self, results):
        """Pad images according to ``self.size``."""
        for key in results.get('img_fields', ['img']):
            if self.size is not None:
                padded_img = mmcv.impad(
                    results[key], shape=self.size, pad_val=self.pad_val)
            elif self.size_divisor is not None:
                padded_img = mmcv.impad_to_multiple(
                    results[key], self.size_divisor, pad_val=self.pad_val)
            results[key] = padded_img
        results['pad_shape'] = padded_img.shape
        results['pad_fixed_size'] = self.size
        results['pad_size_divisor'] = self.size_divisor

    def _pad_masks(self, results):
        """Pad masks according to ``results['pad_shape']``."""
        pad_shape = results['pad_shape'][:2]
        for key in results.get('mask_fields', []):
            results[key] = results[key].pad(pad_shape, pad_val=self.pad_val)

    def _pad_seg(self, results):
        """Pad semantic segmentation map according to
        ``results['pad_shape']``."""
        for key in results.get('seg_fields', []):
            results[key] = mmcv.impad(
                results[key], shape=results['pad_shape'][:2])

    def __call__(self, results):
        """Call function to pad images, masks, semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Updated result dict.
        """
        self._pad_img(results)
        self._pad_masks(results)
        self._pad_seg(results)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(size={self.size}, '
        repr_str += f'size_divisor={self.size_divisor}, '
        repr_str += f'pad_val={self.pad_val})'
        return repr_str


@PIPELINES.register_module()
class Normalize(object):
    """Normalize the image.

    Added key is "img_norm_cfg".

    Args:
        mean (sequence): Mean values of 3 channels.
        std (sequence): Std values of 3 channels.
        to_rgb (bool): Whether to convert the image from BGR to RGB,
            default is true.
    """

    def __init__(self, mean, std, to_rgb=True):
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)
        self.to_rgb = to_rgb

    def __call__(self, results):
        """Call function to normalize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Normalized results, 'img_norm_cfg' key is added into
                result dict.
        """
        for key in results.get('img_fields', ['img']):
            results[key] = mmcv.imnormalize(results[key], self.mean, self.std,
                                            self.to_rgb)
        results['img_norm_cfg'] = dict(
            mean=self.mean, std=self.std, to_rgb=self.to_rgb)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})'
        return repr_str


@PIPELINES.register_module()
class RandomCrop(object):
    """Random crop the image & bboxes & masks.

    The absolute `crop_size` is sampled based on `crop_type` and `image_size`,
    then the cropped results are generated.

    Args:
        crop_size (tuple): The relative ratio or absolute pixels of
            height and width.
        crop_type (str, optional): one of "relative_range", "relative",
            "absolute", "absolute_range". "relative" randomly crops
            (h * crop_size[0], w * crop_size[1]) part from an input of size
            (h, w). "relative_range" uniformly samples relative crop size from
            range [crop_size[0], 1] and [crop_size[1], 1] for height and width
            respectively. "absolute" crops from an input with absolute size
            (crop_size[0], crop_size[1]). "absolute_range" uniformly samples
            crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
            in range [crop_size[0], min(w, crop_size[1])]. Default "absolute".
        allow_negative_crop (bool, optional): Whether to allow a crop that does
            not contain any bbox area. Default False.
        bbox_clip_border (bool, optional): Whether clip the objects outside
            the border of the image. Defaults to True.

    Note:
        - If the image is smaller than the absolute crop size, return the
            original image.
        - The keys for bboxes, labels and masks must be aligned. That is,
          `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and
          `gt_bboxes_ignore` corresponds to `gt_labels_ignore` and
          `gt_masks_ignore`.
        - If the crop does not contain any gt-bbox region and
          `allow_negative_crop` is set to False, skip this image.
    """

    def __init__(self,
                 crop_size,
                 crop_type='absolute',
                 allow_negative_crop=False,
                 bbox_clip_border=True):
        if crop_type not in [
                'relative_range', 'relative', 'absolute', 'absolute_range'
        ]:
            raise ValueError(f'Invalid crop_type {crop_type}.')
        if crop_type in ['absolute', 'absolute_range']:
            assert crop_size[0] > 0 and crop_size[1] > 0
            assert isinstance(crop_size[0], int) and isinstance(
                crop_size[1], int)
        else:
            assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1
        self.crop_size = crop_size
        self.crop_type = crop_type
        self.allow_negative_crop = allow_negative_crop
        self.bbox_clip_border = bbox_clip_border
        # The key correspondence from bboxes to labels and masks.
        self.bbox2label = {
            'gt_bboxes': 'gt_labels',
            'gt_bboxes_ignore': 'gt_labels_ignore'
        }
        self.bbox2mask = {
            'gt_bboxes': 'gt_masks',
            'gt_bboxes_ignore': 'gt_masks_ignore'
        }

    def _crop_data(self, results, crop_size, allow_negative_crop):
        """Function to randomly crop images, bounding boxes, masks, semantic
        segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.
            crop_size (tuple): Expected absolute size after cropping, (h, w).
            allow_negative_crop (bool): Whether to allow a crop that does not
                contain any bbox area. Default to False.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
                updated according to crop size.
        """
        assert crop_size[0] > 0 and crop_size[1] > 0
        for key in results.get('img_fields', ['img']):
            img = results[key]
            margin_h = max(img.shape[0] - crop_size[0], 0)
            margin_w = max(img.shape[1] - crop_size[1], 0)
            offset_h = np.random.randint(0, margin_h + 1)
            offset_w = np.random.randint(0, margin_w + 1)
            crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
            crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]

            # crop the image
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            img_shape = img.shape
            results[key] = img
        results['img_shape'] = img_shape

        # crop bboxes accordingly and clip to the image boundary
        for key in results.get('bbox_fields', []):
            # e.g. gt_bboxes and gt_bboxes_ignore
            bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
                                   dtype=np.float32)
            bboxes = results[key] - bbox_offset
            if self.bbox_clip_border:
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
                bboxes[:, 3] > bboxes[:, 1])
            # If the crop does not contain any gt-bbox area and
            # allow_negative_crop is False, skip this image.
            if (key == 'gt_bboxes' and not valid_inds.any()
                    and not allow_negative_crop):
                return None
            results[key] = bboxes[valid_inds, :]
            # label fields. e.g. gt_labels and gt_labels_ignore
            label_key = self.bbox2label.get(key)
            if label_key in results:
                results[label_key] = results[label_key][valid_inds]

            # mask fields, e.g. gt_masks and gt_masks_ignore
            mask_key = self.bbox2mask.get(key)
            if mask_key in results:
                results[mask_key] = results[mask_key][
                    valid_inds.nonzero()[0]].crop(
                        np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))

        # crop semantic seg
        for key in results.get('seg_fields', []):
            results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]

        return results

    def _get_crop_size(self, image_size):
        """Randomly generates the absolute crop size based on `crop_type` and
        `image_size`.

        Args:
            image_size (tuple): (h, w).

        Returns:
            crop_size (tuple): (crop_h, crop_w) in absolute pixels.
        """
        h, w = image_size
        if self.crop_type == 'absolute':
            return (min(self.crop_size[0], h), min(self.crop_size[1], w))
        elif self.crop_type == 'absolute_range':
            assert self.crop_size[0] <= self.crop_size[1]
            crop_h = np.random.randint(
                min(h, self.crop_size[0]),
                min(h, self.crop_size[1]) + 1)
            crop_w = np.random.randint(
                min(w, self.crop_size[0]),
                min(w, self.crop_size[1]) + 1)
            return crop_h, crop_w
        elif self.crop_type == 'relative':
            crop_h, crop_w = self.crop_size
            return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
        elif self.crop_type == 'relative_range':
            crop_size = np.asarray(self.crop_size, dtype=np.float32)
            crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size)
            return int(h * crop_h + 0.5), int(w * crop_w + 0.5)

    def __call__(self, results):
        """Call function to randomly crop images, bounding boxes, masks,
        semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
                updated according to crop size.
        """
        image_size = results['img'].shape[:2]
        crop_size = self._get_crop_size(image_size)
        results = self._crop_data(results, crop_size, self.allow_negative_crop)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'crop_type={self.crop_type}, '
        repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class SegRescale(object):
    """Rescale semantic segmentation maps.

    Args:
        scale_factor (float): The scale factor of the final output.
        backend (str): Image rescale backend, choices are 'cv2' and 'pillow'.
            These two backends generates slightly different results. Defaults
            to 'cv2'.
    """

    def __init__(self, scale_factor=1, backend='cv2'):
        self.scale_factor = scale_factor
        self.backend = backend

    def __call__(self, results):
        """Call function to scale the semantic segmentation map.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with semantic segmentation map scaled.
        """

        for key in results.get('seg_fields', []):
            if self.scale_factor != 1:
                results[key] = mmcv.imrescale(
                    results[key],
                    self.scale_factor,
                    interpolation='nearest',
                    backend=self.backend)
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(scale_factor={self.scale_factor})'


@PIPELINES.register_module()
class PhotoMetricDistortion(object):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (tuple): range of contrast.
        saturation_range (tuple): range of saturation.
        hue_delta (int): delta of hue.
    """

    def __init__(self,
                 brightness_delta=32,
                 contrast_range=(0.5, 1.5),
                 saturation_range=(0.5, 1.5),
                 hue_delta=18):
        self.brightness_delta = brightness_delta
        self.contrast_lower, self.contrast_upper = contrast_range
        self.saturation_lower, self.saturation_upper = saturation_range
        self.hue_delta = hue_delta

    def __call__(self, results):
        """Call function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """

        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        img = results['img']
        assert img.dtype == np.float32, \
            'PhotoMetricDistortion needs the input image of dtype np.float32,'\
            ' please set "to_float32=True" in "LoadImageFromFile" pipeline'
        # random brightness
        if random.randint(2):
            delta = random.uniform(-self.brightness_delta,
                                   self.brightness_delta)
            img += delta

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        mode = random.randint(2)
        if mode == 1:
            if random.randint(2):
                alpha = random.uniform(self.contrast_lower,
                                       self.contrast_upper)
                img *= alpha

        # convert color from BGR to HSV
        img = mmcv.bgr2hsv(img)

        # random saturation
        if random.randint(2):
            img[..., 1] *= random.uniform(self.saturation_lower,
                                          self.saturation_upper)

        # random hue
        if random.randint(2):
            img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta)
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = mmcv.hsv2bgr(img)

        # random contrast
        if mode == 0:
            if random.randint(2):
                alpha = random.uniform(self.contrast_lower,
                                       self.contrast_upper)
                img *= alpha

        # randomly swap channels
        if random.randint(2):
            img = img[..., random.permutation(3)]

        results['img'] = img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(\nbrightness_delta={self.brightness_delta},\n'
        repr_str += 'contrast_range='
        repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n'
        repr_str += 'saturation_range='
        repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n'
        repr_str += f'hue_delta={self.hue_delta})'
        return repr_str


@PIPELINES.register_module()
class Expand(object):
    """Random expand the image & bboxes.

    Randomly place the original image on a canvas of 'ratio' x original image
    size filled with mean values. The ratio is in the range of ratio_range.

    Args:
        mean (tuple): mean value of dataset.
        to_rgb (bool): if need to convert the order of mean to align with RGB.
        ratio_range (tuple): range of expand ratio.
        prob (float): probability of applying this transformation
    """

    def __init__(self,
                 mean=(0, 0, 0),
                 to_rgb=True,
                 ratio_range=(1, 4),
                 seg_ignore_label=None,
                 prob=0.5):
        self.to_rgb = to_rgb
        self.ratio_range = ratio_range
        if to_rgb:
            self.mean = mean[::-1]
        else:
            self.mean = mean
        self.min_ratio, self.max_ratio = ratio_range
        self.seg_ignore_label = seg_ignore_label
        self.prob = prob

    def __call__(self, results):
        """Call function to expand images, bounding boxes.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images, bounding boxes expanded
        """

        if random.uniform(0, 1) > self.prob:
            return results

        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        img = results['img']

        h, w, c = img.shape
        ratio = random.uniform(self.min_ratio, self.max_ratio)
        # speedup expand when meets large image
        if np.all(self.mean == self.mean[0]):
            expand_img = np.empty((int(h * ratio), int(w * ratio), c),
                                  img.dtype)
            expand_img.fill(self.mean[0])
        else:
            expand_img = np.full((int(h * ratio), int(w * ratio), c),
                                 self.mean,
                                 dtype=img.dtype)
        left = int(random.uniform(0, w * ratio - w))
        top = int(random.uniform(0, h * ratio - h))
        expand_img[top:top + h, left:left + w] = img

        results['img'] = expand_img
        # expand bboxes
        for key in results.get('bbox_fields', []):
            results[key] = results[key] + np.tile(
                (left, top), 2).astype(results[key].dtype)

        # expand masks
        for key in results.get('mask_fields', []):
            results[key] = results[key].expand(
                int(h * ratio), int(w * ratio), top, left)

        # expand segs
        for key in results.get('seg_fields', []):
            gt_seg = results[key]
            expand_gt_seg = np.full((int(h * ratio), int(w * ratio)),
                                    self.seg_ignore_label,
                                    dtype=gt_seg.dtype)
            expand_gt_seg[top:top + h, left:left + w] = gt_seg
            results[key] = expand_gt_seg
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, '
        repr_str += f'ratio_range={self.ratio_range}, '
        repr_str += f'seg_ignore_label={self.seg_ignore_label})'
        return repr_str


@PIPELINES.register_module()
class MinIoURandomCrop(object):
    """Random crop the image & bboxes, the cropped patches have minimum IoU
    requirement with original image & bboxes, the IoU threshold is randomly
    selected from min_ious.

    Args:
        min_ious (tuple): minimum IoU threshold for all intersections with
        bounding boxes
        min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w,
        where a >= min_crop_size).
        bbox_clip_border (bool, optional): Whether clip the objects outside
            the border of the image. Defaults to True.

    Note:
        The keys for bboxes, labels and masks should be paired. That is, \
        `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \
        `gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`.
    """

    def __init__(self,
                 min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
                 min_crop_size=0.3,
                 bbox_clip_border=True):
        # 1: return ori img
        self.min_ious = min_ious
        self.sample_mode = (1, *min_ious, 0)
        self.min_crop_size = min_crop_size
        self.bbox_clip_border = bbox_clip_border
        self.bbox2label = {
            'gt_bboxes': 'gt_labels',
            'gt_bboxes_ignore': 'gt_labels_ignore'
        }
        self.bbox2mask = {
            'gt_bboxes': 'gt_masks',
            'gt_bboxes_ignore': 'gt_masks_ignore'
        }

    def __call__(self, results):
        """Call function to crop images and bounding boxes with minimum IoU
        constraint.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images and bounding boxes cropped, \
                'img_shape' key is updated.
        """

        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        img = results['img']
        assert 'bbox_fields' in results
        boxes = [results[key] for key in results['bbox_fields']]
        boxes = np.concatenate(boxes, 0)
        h, w, c = img.shape
        while True:
            mode = random.choice(self.sample_mode)
            self.mode = mode
            if mode == 1:
                return results

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w, w)
                new_h = random.uniform(self.min_crop_size * h, h)

                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)

                patch = np.array(
                    (int(left), int(top), int(left + new_w), int(top + new_h)))
                # Line or point crop is not allowed
                if patch[2] == patch[0] or patch[3] == patch[1]:
                    continue
                overlaps = bbox_overlaps(
                    patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1)
                if len(overlaps) > 0 and overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                # only adjust boxes and instance masks when the gt is not empty
                if len(overlaps) > 0:
                    # adjust boxes
                    def is_center_of_bboxes_in_patch(boxes, patch):
                        center = (boxes[:, :2] + boxes[:, 2:]) / 2
                        mask = ((center[:, 0] > patch[0]) *
                                (center[:, 1] > patch[1]) *
                                (center[:, 0] < patch[2]) *
                                (center[:, 1] < patch[3]))
                        return mask

                    mask = is_center_of_bboxes_in_patch(boxes, patch)
                    if not mask.any():
                        continue
                    for key in results.get('bbox_fields', []):
                        boxes = results[key].copy()
                        mask = is_center_of_bboxes_in_patch(boxes, patch)
                        boxes = boxes[mask]
                        if self.bbox_clip_border:
                            boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                            boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                        boxes -= np.tile(patch[:2], 2)

                        results[key] = boxes
                        # labels
                        label_key = self.bbox2label.get(key)
                        if label_key in results:
                            results[label_key] = results[label_key][mask]

                        # mask fields
                        mask_key = self.bbox2mask.get(key)
                        if mask_key in results:
                            results[mask_key] = results[mask_key][
                                mask.nonzero()[0]].crop(patch)
                # adjust the img no matter whether the gt is empty before crop
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                results['img'] = img
                results['img_shape'] = img.shape

                # seg fields
                for key in results.get('seg_fields', []):
                    results[key] = results[key][patch[1]:patch[3],
                                                patch[0]:patch[2]]
                return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(min_ious={self.min_ious}, '
        repr_str += f'min_crop_size={self.min_crop_size}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class Corrupt(object):
    """Corruption augmentation.

    Corruption transforms implemented based on
    `imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_.

    Args:
        corruption (str): Corruption name.
        severity (int, optional): The severity of corruption. Default: 1.
    """

    def __init__(self, corruption, severity=1):
        self.corruption = corruption
        self.severity = severity

    def __call__(self, results):
        """Call function to corrupt image.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images corrupted.
        """

        if corrupt is None:
            raise RuntimeError('imagecorruptions is not installed')
        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        results['img'] = corrupt(
            results['img'].astype(np.uint8),
            corruption_name=self.corruption,
            severity=self.severity)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(corruption={self.corruption}, '
        repr_str += f'severity={self.severity})'
        return repr_str


@PIPELINES.register_module()
class Albu(object):
    """Albumentation augmentation.

    Adds custom transformations from Albumentations library.
    Please, visit `https://albumentations.readthedocs.io`
    to get more information.

    An example of ``transforms`` is as followed:

    .. code-block::

        [
            dict(
                type='ShiftScaleRotate',
                shift_limit=0.0625,
                scale_limit=0.0,
                rotate_limit=0,
                interpolation=1,
                p=0.5),
            dict(
                type='RandomBrightnessContrast',
                brightness_limit=[0.1, 0.3],
                contrast_limit=[0.1, 0.3],
                p=0.2),
            dict(type='ChannelShuffle', p=0.1),
            dict(
                type='OneOf',
                transforms=[
                    dict(type='Blur', blur_limit=3, p=1.0),
                    dict(type='MedianBlur', blur_limit=3, p=1.0)
                ],
                p=0.1),
        ]

    Args:
        transforms (list[dict]): A list of albu transformations
        bbox_params (dict): Bbox_params for albumentation `Compose`
        keymap (dict): Contains {'input key':'albumentation-style key'}
        skip_img_without_anno (bool): Whether to skip the image if no ann left
            after aug
    """

    def __init__(self,
                 transforms,
                 bbox_params=None,
                 keymap=None,
                 update_pad_shape=False,
                 skip_img_without_anno=False):
        if Compose is None:
            raise RuntimeError('albumentations is not installed')

        # Args will be modified later, copying it will be safer
        transforms = copy.deepcopy(transforms)
        if bbox_params is not None:
            bbox_params = copy.deepcopy(bbox_params)
        if keymap is not None:
            keymap = copy.deepcopy(keymap)
        self.transforms = transforms
        self.filter_lost_elements = False
        self.update_pad_shape = update_pad_shape
        self.skip_img_without_anno = skip_img_without_anno

        # A simple workaround to remove masks without boxes
        if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params
                and 'filter_lost_elements' in bbox_params):
            self.filter_lost_elements = True
            self.origin_label_fields = bbox_params['label_fields']
            bbox_params['label_fields'] = ['idx_mapper']
            del bbox_params['filter_lost_elements']

        self.bbox_params = (
            self.albu_builder(bbox_params) if bbox_params else None)
        self.aug = Compose([self.albu_builder(t) for t in self.transforms],
                           bbox_params=self.bbox_params)

        if not keymap:
            self.keymap_to_albu = {
                'img': 'image',
                'gt_masks': 'masks',
                'gt_bboxes': 'bboxes'
            }
        else:
            self.keymap_to_albu = keymap
        self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}

    def albu_builder(self, cfg):
        """Import a module from albumentations.

        It inherits some of :func:`build_from_cfg` logic.

        Args:
            cfg (dict): Config dict. It should at least contain the key "type".

        Returns:
            obj: The constructed object.
        """

        assert isinstance(cfg, dict) and 'type' in cfg
        args = cfg.copy()

        obj_type = args.pop('type')
        if mmcv.is_str(obj_type):
            if albumentations is None:
                raise RuntimeError('albumentations is not installed')
            obj_cls = getattr(albumentations, obj_type)
        elif inspect.isclass(obj_type):
            obj_cls = obj_type
        else:
            raise TypeError(
                f'type must be a str or valid type, but got {type(obj_type)}')

        if 'transforms' in args:
            args['transforms'] = [
                self.albu_builder(transform)
                for transform in args['transforms']
            ]

        return obj_cls(**args)

    @staticmethod
    def mapper(d, keymap):
        """Dictionary mapper. Renames keys according to keymap provided.

        Args:
            d (dict): old dict
            keymap (dict): {'old_key':'new_key'}
        Returns:
            dict: new dict.
        """

        updated_dict = {}
        for k, v in zip(d.keys(), d.values()):
            new_k = keymap.get(k, k)
            updated_dict[new_k] = d[k]
        return updated_dict

    def __call__(self, results):
        # dict to albumentations format
        results = self.mapper(results, self.keymap_to_albu)
        # TODO: add bbox_fields
        if 'bboxes' in results:
            # to list of boxes
            if isinstance(results['bboxes'], np.ndarray):
                results['bboxes'] = [x for x in results['bboxes']]
            # add pseudo-field for filtration
            if self.filter_lost_elements:
                results['idx_mapper'] = np.arange(len(results['bboxes']))

        # TODO: Support mask structure in albu
        if 'masks' in results:
            if isinstance(results['masks'], PolygonMasks):
                raise NotImplementedError(
                    'Albu only supports BitMap masks now')
            ori_masks = results['masks']
            if albumentations.__version__ < '0.5':
                results['masks'] = results['masks'].masks
            else:
                results['masks'] = [mask for mask in results['masks'].masks]

        results = self.aug(**results)

        if 'bboxes' in results:
            if isinstance(results['bboxes'], list):
                results['bboxes'] = np.array(
                    results['bboxes'], dtype=np.float32)
            results['bboxes'] = results['bboxes'].reshape(-1, 4)

            # filter label_fields
            if self.filter_lost_elements:

                for label in self.origin_label_fields:
                    results[label] = np.array(
                        [results[label][i] for i in results['idx_mapper']])
                if 'masks' in results:
                    results['masks'] = np.array(
                        [results['masks'][i] for i in results['idx_mapper']])
                    results['masks'] = ori_masks.__class__(
                        results['masks'], results['image'].shape[0],
                        results['image'].shape[1])

                if (not len(results['idx_mapper'])
                        and self.skip_img_without_anno):
                    return None

        if 'gt_labels' in results:
            if isinstance(results['gt_labels'], list):
                results['gt_labels'] = np.array(results['gt_labels'])
            results['gt_labels'] = results['gt_labels'].astype(np.int64)

        # back to the original format
        results = self.mapper(results, self.keymap_back)

        # update final shape
        if self.update_pad_shape:
            results['pad_shape'] = results['img'].shape

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
        return repr_str


@PIPELINES.register_module()
class RandomCenterCropPad(object):
    """Random center crop and random around padding for CornerNet.

    This operation generates randomly cropped image from the original image and
    pads it simultaneously. Different from :class:`RandomCrop`, the output
    shape may not equal to ``crop_size`` strictly. We choose a random value
    from ``ratios`` and the output shape could be larger or smaller than
    ``crop_size``. The padding operation is also different from :class:`Pad`,
    here we use around padding instead of right-bottom padding.

    The relation between output image (padding image) and original image:

    .. code:: text

                        output image

               +----------------------------+
               |          padded area       |
        +------|----------------------------|----------+
        |      |         cropped area       |          |
        |      |         +---------------+  |          |
        |      |         |    .   center |  |          | original image
        |      |         |        range  |  |          |
        |      |         +---------------+  |          |
        +------|----------------------------|----------+
               |          padded area       |
               +----------------------------+

    There are 5 main areas in the figure:

    - output image: output image of this operation, also called padding
      image in following instruction.
    - original image: input image of this operation.
    - padded area: non-intersect area of output image and original image.
    - cropped area: the overlap of output image and original image.
    - center range: a smaller area where random center chosen from.
      center range is computed by ``border`` and original image's shape
      to avoid our random center is too close to original image's border.

    Also this operation act differently in train and test mode, the summary
    pipeline is listed below.

    Train pipeline:

    1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image
       will be ``random_ratio * crop_size``.
    2. Choose a ``random_center`` in center range.
    3. Generate padding image with center matches the ``random_center``.
    4. Initialize the padding image with pixel value equals to ``mean``.
    5. Copy the cropped area to padding image.
    6. Refine annotations.

    Test pipeline:

    1. Compute output shape according to ``test_pad_mode``.
    2. Generate padding image with center matches the original image
       center.
    3. Initialize the padding image with pixel value equals to ``mean``.
    4. Copy the ``cropped area`` to padding image.

    Args:
        crop_size (tuple | None): expected size after crop, final size will
            computed according to ratio. Requires (h, w) in train mode, and
            None in test mode.
        ratios (tuple): random select a ratio from tuple and crop image to
            (crop_size[0] * ratio) * (crop_size[1] * ratio).
            Only available in train mode.
        border (int): max distance from center select area to image border.
            Only available in train mode.
        mean (sequence): Mean values of 3 channels.
        std (sequence): Std values of 3 channels.
        to_rgb (bool): Whether to convert the image from BGR to RGB.
        test_mode (bool): whether involve random variables in transform.
            In train mode, crop_size is fixed, center coords and ratio is
            random selected from predefined lists. In test mode, crop_size
            is image's original shape, center coords and ratio is fixed.
        test_pad_mode (tuple): padding method and padding shape value, only
            available in test mode. Default is using 'logical_or' with
            127 as padding shape value.

            - 'logical_or': final_shape = input_shape | padding_shape_value
            - 'size_divisor': final_shape = int(
              ceil(input_shape / padding_shape_value) * padding_shape_value)
        bbox_clip_border (bool, optional): Whether clip the objects outside
            the border of the image. Defaults to True.
    """

    def __init__(self,
                 crop_size=None,
                 ratios=(0.9, 1.0, 1.1),
                 border=128,
                 mean=None,
                 std=None,
                 to_rgb=None,
                 test_mode=False,
                 test_pad_mode=('logical_or', 127),
                 bbox_clip_border=True):
        if test_mode:
            assert crop_size is None, 'crop_size must be None in test mode'
            assert ratios is None, 'ratios must be None in test mode'
            assert border is None, 'border must be None in test mode'
            assert isinstance(test_pad_mode, (list, tuple))
            assert test_pad_mode[0] in ['logical_or', 'size_divisor']
        else:
            assert isinstance(crop_size, (list, tuple))
            assert crop_size[0] > 0 and crop_size[1] > 0, (
                'crop_size must > 0 in train mode')
            assert isinstance(ratios, (list, tuple))
            assert test_pad_mode is None, (
                'test_pad_mode must be None in train mode')

        self.crop_size = crop_size
        self.ratios = ratios
        self.border = border
        # We do not set default value to mean, std and to_rgb because these
        # hyper-parameters are easy to forget but could affect the performance.
        # Please use the same setting as Normalize for performance assurance.
        assert mean is not None and std is not None and to_rgb is not None
        self.to_rgb = to_rgb
        self.input_mean = mean
        self.input_std = std
        if to_rgb:
            self.mean = mean[::-1]
            self.std = std[::-1]
        else:
            self.mean = mean
            self.std = std
        self.test_mode = test_mode
        self.test_pad_mode = test_pad_mode
        self.bbox_clip_border = bbox_clip_border

    def _get_border(self, border, size):
        """Get final border for the target size.

        This function generates a ``final_border`` according to image's shape.
        The area between ``final_border`` and ``size - final_border`` is the
        ``center range``. We randomly choose center from the ``center range``
        to avoid our random center is too close to original image's border.
        Also ``center range`` should be larger than 0.

        Args:
            border (int): The initial border, default is 128.
            size (int): The width or height of original image.
        Returns:
            int: The final border.
        """
        k = 2 * border / size
        i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k)))
        return border // i

    def _filter_boxes(self, patch, boxes):
        """Check whether the center of each box is in the patch.

        Args:
            patch (list[int]): The cropped area, [left, top, right, bottom].
            boxes (numpy array, (N x 4)): Ground truth boxes.

        Returns:
            mask (numpy array, (N,)): Each box is inside or outside the patch.
        """
        center = (boxes[:, :2] + boxes[:, 2:]) / 2
        mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (
            center[:, 0] < patch[2]) * (
                center[:, 1] < patch[3])
        return mask

    def _crop_image_and_paste(self, image, center, size):
        """Crop image with a given center and size, then paste the cropped
        image to a blank image with two centers align.

        This function is equivalent to generating a blank image with ``size``
        as its shape. Then cover it on the original image with two centers (
        the center of blank image and the random center of original image)
        aligned. The overlap area is paste from the original image and the
        outside area is filled with ``mean pixel``.

        Args:
            image (np array, H x W x C): Original image.
            center (list[int]): Target crop center coord.
            size (list[int]): Target crop size. [target_h, target_w]

        Returns:
            cropped_img (np array, target_h x target_w x C): Cropped image.
            border (np array, 4): The distance of four border of
                ``cropped_img`` to the original image area, [top, bottom,
                left, right]
            patch (list[int]): The cropped area, [left, top, right, bottom].
        """
        center_y, center_x = center
        target_h, target_w = size
        img_h, img_w, img_c = image.shape

        x0 = max(0, center_x - target_w // 2)
        x1 = min(center_x + target_w // 2, img_w)
        y0 = max(0, center_y - target_h // 2)
        y1 = min(center_y + target_h // 2, img_h)
        patch = np.array((int(x0), int(y0), int(x1), int(y1)))

        left, right = center_x - x0, x1 - center_x
        top, bottom = center_y - y0, y1 - center_y

        cropped_center_y, cropped_center_x = target_h // 2, target_w // 2
        cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype)
        for i in range(img_c):
            cropped_img[:, :, i] += self.mean[i]
        y_slice = slice(cropped_center_y - top, cropped_center_y + bottom)
        x_slice = slice(cropped_center_x - left, cropped_center_x + right)
        cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :]

        border = np.array([
            cropped_center_y - top, cropped_center_y + bottom,
            cropped_center_x - left, cropped_center_x + right
        ],
                          dtype=np.float32)

        return cropped_img, border, patch

    def _train_aug(self, results):
        """Random crop and around padding the original image.

        Args:
            results (dict): Image infomations in the augment pipeline.

        Returns:
            results (dict): The updated dict.
        """
        img = results['img']
        h, w, c = img.shape
        boxes = results['gt_bboxes']
        while True:
            scale = random.choice(self.ratios)
            new_h = int(self.crop_size[0] * scale)
            new_w = int(self.crop_size[1] * scale)
            h_border = self._get_border(self.border, h)
            w_border = self._get_border(self.border, w)

            for i in range(50):
                center_x = random.randint(low=w_border, high=w - w_border)
                center_y = random.randint(low=h_border, high=h - h_border)

                cropped_img, border, patch = self._crop_image_and_paste(
                    img, [center_y, center_x], [new_h, new_w])

                mask = self._filter_boxes(patch, boxes)
                # if image do not have valid bbox, any crop patch is valid.
                if not mask.any() and len(boxes) > 0:
                    continue

                results['img'] = cropped_img
                results['img_shape'] = cropped_img.shape
                results['pad_shape'] = cropped_img.shape

                x0, y0, x1, y1 = patch

                left_w, top_h = center_x - x0, center_y - y0
                cropped_center_x, cropped_center_y = new_w // 2, new_h // 2

                # crop bboxes accordingly and clip to the image boundary
                for key in results.get('bbox_fields', []):
                    mask = self._filter_boxes(patch, results[key])
                    bboxes = results[key][mask]
                    bboxes[:, 0:4:2] += cropped_center_x - left_w - x0
                    bboxes[:, 1:4:2] += cropped_center_y - top_h - y0
                    if self.bbox_clip_border:
                        bboxes[:, 0:4:2] = np.clip(bboxes[:, 0:4:2], 0, new_w)
                        bboxes[:, 1:4:2] = np.clip(bboxes[:, 1:4:2], 0, new_h)
                    keep = (bboxes[:, 2] > bboxes[:, 0]) & (
                        bboxes[:, 3] > bboxes[:, 1])
                    bboxes = bboxes[keep]
                    results[key] = bboxes
                    if key in ['gt_bboxes']:
                        if 'gt_labels' in results:
                            labels = results['gt_labels'][mask]
                            labels = labels[keep]
                            results['gt_labels'] = labels
                        if 'gt_masks' in results:
                            raise NotImplementedError(
                                'RandomCenterCropPad only supports bbox.')

                # crop semantic seg
                for key in results.get('seg_fields', []):
                    raise NotImplementedError(
                        'RandomCenterCropPad only supports bbox.')
                return results

    def _test_aug(self, results):
        """Around padding the original image without cropping.

        The padding mode and value are from ``test_pad_mode``.

        Args:
            results (dict): Image infomations in the augment pipeline.

        Returns:
            results (dict): The updated dict.
        """
        img = results['img']
        h, w, c = img.shape
        results['img_shape'] = img.shape
        if self.test_pad_mode[0] in ['logical_or']:
            target_h = h | self.test_pad_mode[1]
            target_w = w | self.test_pad_mode[1]
        elif self.test_pad_mode[0] in ['size_divisor']:
            divisor = self.test_pad_mode[1]
            target_h = int(np.ceil(h / divisor)) * divisor
            target_w = int(np.ceil(w / divisor)) * divisor
        else:
            raise NotImplementedError(
                'RandomCenterCropPad only support two testing pad mode:'
                'logical-or and size_divisor.')

        cropped_img, border, _ = self._crop_image_and_paste(
            img, [h // 2, w // 2], [target_h, target_w])
        results['img'] = cropped_img
        results['pad_shape'] = cropped_img.shape
        results['border'] = border
        return results

    def __call__(self, results):
        img = results['img']
        assert img.dtype == np.float32, (
            'RandomCenterCropPad needs the input image of dtype np.float32,'
            ' please set "to_float32=True" in "LoadImageFromFile" pipeline')
        h, w, c = img.shape
        assert c == len(self.mean)
        if self.test_mode:
            return self._test_aug(results)
        else:
            return self._train_aug(results)

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'ratios={self.ratios}, '
        repr_str += f'border={self.border}, '
        repr_str += f'mean={self.input_mean}, '
        repr_str += f'std={self.input_std}, '
        repr_str += f'to_rgb={self.to_rgb}, '
        repr_str += f'test_mode={self.test_mode}, '
        repr_str += f'test_pad_mode={self.test_pad_mode}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class CutOut(object):
    """CutOut operation.

    Randomly drop some regions of image used in
    `Cutout <https://arxiv.org/abs/1708.04552>`_.

    Args:
        n_holes (int | tuple[int, int]): Number of regions to be dropped.
            If it is given as a list, number of holes will be randomly
            selected from the closed interval [`n_holes[0]`, `n_holes[1]`].
        cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate
            shape of dropped regions. It can be `tuple[int, int]` to use a
            fixed cutout shape, or `list[tuple[int, int]]` to randomly choose
            shape from the list.
        cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The
            candidate ratio of dropped regions. It can be `tuple[float, float]`
            to use a fixed ratio or `list[tuple[float, float]]` to randomly
            choose ratio from the list. Please note that `cutout_shape`
            and `cutout_ratio` cannot be both given at the same time.
        fill_in (tuple[float, float, float] | tuple[int, int, int]): The value
            of pixel to fill in the dropped regions. Default: (0, 0, 0).
    """

    def __init__(self,
                 n_holes,
                 cutout_shape=None,
                 cutout_ratio=None,
                 fill_in=(0, 0, 0)):

        assert (cutout_shape is None) ^ (cutout_ratio is None), \
            'Either cutout_shape or cutout_ratio should be specified.'
        assert (isinstance(cutout_shape, (list, tuple))
                or isinstance(cutout_ratio, (list, tuple)))
        if isinstance(n_holes, tuple):
            assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1]
        else:
            n_holes = (n_holes, n_holes)
        self.n_holes = n_holes
        self.fill_in = fill_in
        self.with_ratio = cutout_ratio is not None
        self.candidates = cutout_ratio if self.with_ratio else cutout_shape
        if not isinstance(self.candidates, list):
            self.candidates = [self.candidates]

    def __call__(self, results):
        """Call function to drop some regions of image."""
        h, w, c = results['img'].shape
        n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1)
        for _ in range(n_holes):
            x1 = np.random.randint(0, w)
            y1 = np.random.randint(0, h)
            index = np.random.randint(0, len(self.candidates))
            if not self.with_ratio:
                cutout_w, cutout_h = self.candidates[index]
            else:
                cutout_w = int(self.candidates[index][0] * w)
                cutout_h = int(self.candidates[index][1] * h)

            x2 = np.clip(x1 + cutout_w, 0, w)
            y2 = np.clip(y1 + cutout_h, 0, h)
            results['img'][y1:y2, x1:x2, :] = self.fill_in

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(n_holes={self.n_holes}, '
        repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio
                     else f'cutout_shape={self.candidates}, ')
        repr_str += f'fill_in={self.fill_in})'
        return repr_str