import os import torch import gradio as gr from tqdm import tqdm from PIL import Image import torch.nn.functional as F from torchvision import transforms as tfms from transformers import CLIPTextModel, CLIPTokenizer, logging from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" # Load the autoencoder model which will be used to decode the latents into image space. vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") # Load the tokenizer and text encoder to tokenize and encode the text. tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") # The UNet model for generating the latents. unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") # The noise scheduler scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) style_token_dict = {'illustration-style':'', 'hitokomoru-style':'', 'badbucket':'', 'portrait-style-dishonored':'', 'sakimi':''} # To the GPU we go! vae = vae.to(torch_device) text_encoder = text_encoder.to(torch_device) unet = unet.to(torch_device) token_emb_layer = text_encoder.text_model.embeddings.token_embedding pos_emb_layer = text_encoder.text_model.embeddings.position_embedding position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] position_embeddings = pos_emb_layer(position_ids) illustration_style_embeds = torch.load('illustration_style_learned_embeds.bin') hitokomoru_style_embeds = torch.load('hitokomoru_style_learned_embeds.bin') conner_fawcett_style_embeds = torch.load('conner_fawcett_style_learned_embeds.bin') dishonored_portrait_style_embeds = torch.load('dishonored_portrait_style_learned_embeds.bin') sakimi_style_embeds = torch.load('sakimi_style_learned_embeds.bin') tokenizer.add_tokens(['', '', '', '', '']) token_emb_layer_with_art = torch.nn.Embedding(49413, 768) token_emb_layer_with_art.load_state_dict({'weight': torch.cat((token_emb_layer.state_dict()['weight'], illustration_style_embeds[''].unsqueeze(0).to(torch_device), hitokomoru_style_embeds[''].unsqueeze(0).to(torch_device), conner_fawcett_style_embeds[''].unsqueeze(0).to(torch_device), dishonored_portrait_style_embeds[''].unsqueeze(0).to(torch_device), sakimi_style_embeds[''].unsqueeze(0).to(torch_device)))}) token_emb_layer_with_art = token_emb_layer_with_art.to(torch_device) grayscale_transformer = tfms.Grayscale(num_output_channels=3) def set_timesteps(scheduler, num_inference_steps): scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to(torch.float32) def pil_to_latent(input_im): with torch.no_grad(): latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling return 0.18215 * latent.latent_dist.sample() def latents_to_pil(latents): latents = (1 / 0.18215) * latents with torch.no_grad(): image = vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def build_causal_attention_mask(bsz, seq_len, dtype): mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) mask.fill_(torch.tensor(torch.finfo(dtype).min)) # fill with large negative number (acts like -inf) mask = mask.triu_(1) # zero out the lower diagonal to enforce causality return mask.unsqueeze(1) # add a batch dimension def get_output_embeds(input_embeddings): # CLIP's text model uses causal mask, so we prepare it here: bsz, seq_len = input_embeddings.shape[:2] causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # Getting the output embeddings involves calling the model with passing output_hidden_states=True # so that it doesn't just return the pooled final predictions: encoder_outputs = text_encoder.text_model.encoder( inputs_embeds=input_embeddings, attention_mask=None, # We aren't using an attention mask so that can be None causal_attention_mask=causal_attention_mask.to(torch_device), output_attentions=None, output_hidden_states=True, # We want the output embs not the final output return_dict=None, ) # We're interested in the output hidden state only output = encoder_outputs[0] # There is a final layer norm we need to pass these through output = text_encoder.text_model.final_layer_norm(output) # And now they're ready! return output def generate_with_embs(num_inference_steps, guidance_scale, seed, text_input, text_embeddings): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise batch_size = 1 max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler set_timesteps(scheduler, num_inference_steps) # Prep latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample return latents_to_pil(latents)[0] def guide_loss(images, loss_type='Gayscale'): # grayscale loss if loss_type == 'Grayscale': transformed_imgs = grayscale_transformer(images) error = torch.abs(transformed_imgs - images).mean() # brightness loss elif loss_type == 'Bright': transformed_imgs = tfms.functional.adjust_brightness(images, brightness_factor=3) error = torch.abs(transformed_imgs - images).mean() return error def generate_with_guide_loss(num_inference_steps, guidance_scale, seed, text_input, text_embeddings, loss_type, loss_scale): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise batch_size = 1 # And the uncond. input as before: max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler set_timesteps(scheduler, num_inference_steps) # Prep latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform CFG noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) #### ADDITIONAL GUIDANCE ### if i%5 == 0: # Requires grad on the latents latents = latents.detach().requires_grad_() # Get the predicted x0: latents_x0 = latents - sigma * noise_pred # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Decode to image space denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculate loss loss = guide_loss(denoised_images, loss_type) * loss_scale # Occasionally print it out if i%5==0: print(i, 'loss:', loss.item()) # Get gradient cond_grad = torch.autograd.grad(loss, latents)[0] # Modify the latents based on this gradient latents = latents.detach() - cond_grad * sigma**2 # Now step with scheduler latents = scheduler.step(noise_pred, t, latents).prev_sample return latents_to_pil(latents)[0] def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale): prompt = text + " the style of " + style_token_dict[style] # Tokenize text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(torch_device) # Get token embeddings token_embeddings = token_emb_layer_with_art(input_ids) # Combine with pos embs input_embeddings = token_embeddings + position_embeddings # Feed through to get final output embs modified_output_embeddings = get_output_embeds(input_embeddings) # And generate an image with this: image_embs = generate_with_embs(inference_step, guidance_scale, seed, text_input, modified_output_embeddings) # Generate an image with guidance image_guide = generate_with_guide_loss(inference_step, guidance_scale, seed, text_input, modified_output_embeddings, guidance_method, loss_scale) return image_embs, image_guide title = "Stable Diffusion with Textual Inversion" description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art style" examples = [["A Elephant with car ", 'hitokomoru-style', 10, 4.5, 1, 'Grayscale', 100], ["flying baby", 'sakimi', 10, 9.5, 2, 'Bright', 200]] demo = gr.Interface(inference, inputs = [gr.Textbox(label="Prompt", type="text"), gr.Dropdown(label="Style", choices=['illustration-style', 'hitokomoru-style', 'badbucket', 'portrait-style-dishonored', 'sakimi'], value="sakimi"), gr.Slider(10, 30, 10, step = 1, label="Inference steps"), gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"), gr.Slider(0, 10000, 1, step = 1, label="Seed"), gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright'], value="Grayscale"), gr.Slider(100, 10000, 200, step = 100, label="Loss scale")], outputs= [gr.Image(width=320, height=320, label="Generated art"), gr.Image(width=320, height=320, label="Generated art with guidance")], title=title, description=description, examples=examples) demo.launch()