Spaces:
Running
on
T4
Running
on
T4
move parts of the code to tabs
Browse files- README.md +1 -1
- app.py +16 -61
- helper/text/text_app.py +1 -1
- helper/utils.py +80 -59
- requirements.txt +1 -1
- tabs/about_tab.py +54 -0
- tabs/help_tab.py +35 -0
- tabs/htr_tool.py +125 -58
- tabs/stepwise_htr_tool.py +154 -146
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🏢
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
|
|
1 |
---
|
2 |
+
title: HTRFLOW
|
3 |
emoji: 🏢
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
app.py
CHANGED
@@ -1,89 +1,44 @@
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
|
6 |
from helper.gradio_config import css, theme
|
7 |
-
from helper.text.text_about import TextAbout
|
8 |
from helper.text.text_app import TextApp
|
9 |
-
from helper.
|
10 |
-
from
|
11 |
-
from
|
12 |
from tabs.htr_tool import htr_tool_tab
|
13 |
from tabs.stepwise_htr_tool import stepwise_htr_tool_tab
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
scheduler = BackgroundScheduler()
|
19 |
-
scheduler.add_job(func=backup_db, trigger="interval", seconds=60)
|
20 |
-
scheduler.start()
|
21 |
|
22 |
-
|
23 |
-
with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
24 |
with gr.Row():
|
25 |
with gr.Column(scale=1):
|
26 |
-
text_ip_output = gr.Markdown()
|
27 |
with gr.Column(scale=1):
|
28 |
gr.Markdown(TextApp.title_markdown)
|
29 |
with gr.Column(scale=1):
|
30 |
gr.Markdown(TextApp.title_markdown_img)
|
31 |
|
32 |
with gr.Tabs():
|
33 |
-
with gr.Tab("
|
34 |
htr_tool_tab.render()
|
35 |
|
36 |
-
with gr.Tab("Stepwise
|
37 |
stepwise_htr_tool_tab.render()
|
38 |
|
39 |
-
with gr.Tab("
|
40 |
-
|
41 |
-
with gr.Tab("Project"):
|
42 |
-
with gr.Row():
|
43 |
-
with gr.Column():
|
44 |
-
gr.Markdown(TextAbout.intro_text)
|
45 |
-
with gr.Column():
|
46 |
-
gr.Markdown(TextAbout.text_src_code_data_models)
|
47 |
-
with gr.Row():
|
48 |
-
gr.Markdown(TextAbout.pipeline_overview_text)
|
49 |
-
with gr.Row():
|
50 |
-
with gr.Tabs():
|
51 |
-
with gr.Tab("I. Binarization"):
|
52 |
-
gr.Markdown(TextAbout.binarization)
|
53 |
-
with gr.Tab("II. Region Segmentation"):
|
54 |
-
gr.Markdown(TextAbout.text_region_segment)
|
55 |
-
with gr.Tab("III. Line Segmentation"):
|
56 |
-
gr.Markdown(TextAbout.text_line_segmentation)
|
57 |
-
with gr.Tab("IV. Transcriber"):
|
58 |
-
gr.Markdown(TextAbout.text_htr)
|
59 |
-
|
60 |
-
with gr.Tab("Contribution"):
|
61 |
-
with gr.Row():
|
62 |
-
gr.Markdown(TextRoadmap.text_contribution)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
with gr.Column():
|
67 |
-
gr.Markdown(TextHowTo.htr_tool_api_text)
|
68 |
-
gr.Code(
|
69 |
-
value=TextHowTo.code_for_api,
|
70 |
-
language="python",
|
71 |
-
interactive=False,
|
72 |
-
show_label=False,
|
73 |
-
)
|
74 |
-
with gr.Column():
|
75 |
-
gr.Markdown(TextHowTo.duplicatin_space_htr_text)
|
76 |
-
gr.Markdown(TextHowTo.figure_htr_hardware)
|
77 |
-
gr.Markdown(TextHowTo.duplicatin_for_privat)
|
78 |
-
|
79 |
-
with gr.Tab("Roadmap"):
|
80 |
-
with gr.Row():
|
81 |
-
with gr.Column():
|
82 |
-
gr.Markdown(TextRoadmap.roadmap)
|
83 |
-
with gr.Column():
|
84 |
-
gr.Markdown(TextRoadmap.discussion)
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
|
89 |
demo.queue(concurrency_count=2, max_size=2)
|
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
from helper.gradio_config import css, theme
|
|
|
6 |
from helper.text.text_app import TextApp
|
7 |
+
from helper.utils import TrafficDataHandler
|
8 |
+
from tabs.about_tab import about_tab
|
9 |
+
from tabs.help_tab import help_tab
|
10 |
from tabs.htr_tool import htr_tool_tab
|
11 |
from tabs.stepwise_htr_tool import stepwise_htr_tool_tab
|
12 |
|
13 |
+
handler = TrafficDataHandler()
|
14 |
|
15 |
+
VERSION = "Demo version 0.0.2"
|
|
|
|
|
|
|
16 |
|
17 |
+
with gr.Blocks(title="Riksarkivet", theme=theme, css=css) as demo:
|
|
|
18 |
with gr.Row():
|
19 |
with gr.Column(scale=1):
|
20 |
+
text_ip_output = gr.Markdown(VERSION)
|
21 |
with gr.Column(scale=1):
|
22 |
gr.Markdown(TextApp.title_markdown)
|
23 |
with gr.Column(scale=1):
|
24 |
gr.Markdown(TextApp.title_markdown_img)
|
25 |
|
26 |
with gr.Tabs():
|
27 |
+
with gr.Tab("Fast track"):
|
28 |
htr_tool_tab.render()
|
29 |
|
30 |
+
with gr.Tab("Stepwise"):
|
31 |
stepwise_htr_tool_tab.render()
|
32 |
|
33 |
+
with gr.Tab("Help"):
|
34 |
+
help_tab.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
with gr.Tab("About"):
|
37 |
+
about_tab.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
SECRET_KEY = os.environ.get("AM_I_IN_A_DOCKER_CONTAINER", False)
|
40 |
+
if SECRET_KEY:
|
41 |
+
demo.load(handler.onload_store_metric_data)
|
42 |
|
43 |
|
44 |
demo.queue(concurrency_count=2, max_size=2)
|
helper/text/text_app.py
CHANGED
@@ -2,7 +2,7 @@ class TextApp:
|
|
2 |
title_markdown = """
|
3 |
|
4 |
|
5 |
-
<h1><center>
|
6 |
|
7 |
<h3><center> Swedish National Archives - Riksarkivet </center></h3>"""
|
8 |
|
|
|
2 |
title_markdown = """
|
3 |
|
4 |
|
5 |
+
<h1><center> HTRFLOW </center></h1>
|
6 |
|
7 |
<h3><center> Swedish National Archives - Riksarkivet </center></h3>"""
|
8 |
|
helper/utils.py
CHANGED
@@ -2,68 +2,89 @@ import hashlib
|
|
2 |
import os
|
3 |
import shutil
|
4 |
import sqlite3
|
|
|
5 |
from datetime import datetime
|
6 |
|
7 |
import gradio as gr
|
8 |
import huggingface_hub
|
9 |
import pandas as pd
|
10 |
import pytz
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
except sqlite3.OperationalError:
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import shutil
|
4 |
import sqlite3
|
5 |
+
import uuid
|
6 |
from datetime import datetime
|
7 |
|
8 |
import gradio as gr
|
9 |
import huggingface_hub
|
10 |
import pandas as pd
|
11 |
import pytz
|
12 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
13 |
+
|
14 |
+
|
15 |
+
class TrafficDataHandler:
|
16 |
+
_DB_FILE_PATH = "./traffic_data.db"
|
17 |
+
_DB_TEMP_PATH = "./data/traffic_data.db"
|
18 |
+
_TOKEN = os.environ.get("HUB_TOKEN")
|
19 |
+
_TZ = "Europe/Stockholm"
|
20 |
+
_INTERVAL_MIN_UPDATE = 30
|
21 |
+
|
22 |
+
def __init__(self, dataset_repo="Riksarkivet/traffic_demo_data"):
|
23 |
+
self._repo = huggingface_hub.Repository(
|
24 |
+
local_dir="data", repo_type="dataset", clone_from=dataset_repo, use_auth_token=self._TOKEN
|
25 |
+
)
|
26 |
+
self._pull_repo_data()
|
27 |
+
self._setup_database()
|
28 |
+
|
29 |
+
def _pull_repo_data(self):
|
30 |
+
self._repo.git_pull()
|
31 |
+
shutil.copyfile(self._DB_TEMP_PATH, self._DB_FILE_PATH)
|
32 |
+
|
33 |
+
def _hash_ip(self, ip_address):
|
34 |
+
return hashlib.sha256(ip_address.encode()).hexdigest()
|
35 |
+
|
36 |
+
def _current_time_in_sweden(self):
|
37 |
+
swedish_tz = pytz.timezone(self._TZ)
|
38 |
+
return datetime.now(swedish_tz).strftime("%Y-%m-%d %H:%M:%S")
|
39 |
+
|
40 |
+
def onload_store_metric_data(self, request: gr.Request):
|
41 |
+
self._session_uuid = str(uuid.uuid1())
|
42 |
+
hashed_host = self._hash_ip(request.client.host)
|
43 |
+
self._backup_and_update_database(hashed_host, "load")
|
44 |
+
|
45 |
+
def store_metric_data(self, action, request: gr.Request):
|
46 |
+
self._session_uuid = str(uuid.uuid1())
|
47 |
+
hashed_host = self._hash_ip(request.client.host)
|
48 |
+
self._backup_and_update_database(hashed_host, action)
|
49 |
+
|
50 |
+
def _commit_host_to_database(self, hashed_host, action):
|
51 |
+
with sqlite3.connect(self._DB_FILE_PATH) as db:
|
52 |
+
db.execute(
|
53 |
+
"INSERT INTO ip_data(current_time, hashed_ip, session_uuid, action) VALUES(?,?,?,?)",
|
54 |
+
[self._current_time_in_sweden(), hashed_host, self._session_uuid, action],
|
55 |
+
)
|
56 |
+
|
57 |
+
def _setup_database(self):
|
58 |
+
with sqlite3.connect(self._DB_FILE_PATH) as db:
|
59 |
+
try:
|
60 |
+
db.execute("SELECT * FROM ip_data").fetchall()
|
61 |
+
except sqlite3.OperationalError:
|
62 |
+
db.execute(
|
63 |
+
"""
|
64 |
+
CREATE TABLE ip_data (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
|
65 |
+
current_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
|
66 |
+
hashed_ip TEXT,
|
67 |
+
session_uuid TEXT,
|
68 |
+
action TEXT)
|
69 |
+
"""
|
70 |
+
)
|
71 |
+
|
72 |
+
def _backup_and_update_database(self, hashed_host, action):
|
73 |
+
self._commit_host_to_database(hashed_host, action)
|
74 |
+
shutil.copyfile(self._DB_FILE_PATH, self._DB_TEMP_PATH)
|
75 |
+
|
76 |
+
with sqlite3.connect(self._DB_FILE_PATH) as db:
|
77 |
+
ip_data = db.execute("SELECT * FROM ip_data").fetchall()
|
78 |
+
pd.DataFrame(ip_data, columns=["id", "current_time", "hashed_ip", "session_uuid", "action"]).to_csv(
|
79 |
+
"./data/ip_data.csv", index=False
|
80 |
+
)
|
81 |
+
|
82 |
+
self._repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.now()}")
|
83 |
+
|
84 |
+
def _initialize_and_schedule_backup(self, hashed_host, action):
|
85 |
+
self._backup_and_update_database(hashed_host, action)
|
86 |
+
scheduler = BackgroundScheduler()
|
87 |
+
scheduler.add_job(
|
88 |
+
self._backup_and_update_database, "interval", minutes=self._INTERVAL_MIN_UPDATE, args=(hashed_host, action)
|
89 |
+
)
|
90 |
+
scheduler.start()
|
requirements.txt
CHANGED
@@ -7,7 +7,7 @@ numpy==1.25.0
|
|
7 |
opencv-python-headless==4.7.0.72
|
8 |
Jinja2==3.1.2
|
9 |
transformers==4.30.2
|
10 |
-
huggingface-hub
|
11 |
datasets==2.14.5
|
12 |
requests==2.31.0
|
13 |
apscheduler
|
|
|
7 |
opencv-python-headless==4.7.0.72
|
8 |
Jinja2==3.1.2
|
9 |
transformers==4.30.2
|
10 |
+
huggingface-hub==0.15.1
|
11 |
datasets==2.14.5
|
12 |
requests==2.31.0
|
13 |
apscheduler
|
tabs/about_tab.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from helper.text.text_about import TextAbout
|
4 |
+
from helper.text.text_roadmap import TextRoadmap
|
5 |
+
|
6 |
+
with gr.Blocks() as about_tab:
|
7 |
+
with gr.Tabs():
|
8 |
+
with gr.Tab("HTRFLOW"):
|
9 |
+
gr.Markdown(
|
10 |
+
"update... todo.. here we should talk about the pipline and the app as seperate things... pipline overview perhaps be moved?"
|
11 |
+
)
|
12 |
+
with gr.Row():
|
13 |
+
with gr.Column():
|
14 |
+
gr.Markdown(TextAbout.intro_text)
|
15 |
+
with gr.Column():
|
16 |
+
gr.Markdown(TextAbout.text_src_code_data_models)
|
17 |
+
with gr.Row():
|
18 |
+
gr.Markdown(TextAbout.pipeline_overview_text)
|
19 |
+
with gr.Row():
|
20 |
+
with gr.Tabs():
|
21 |
+
with gr.Tab("1. Binarization"):
|
22 |
+
gr.Markdown(TextAbout.binarization)
|
23 |
+
with gr.Tab("2. Region Segmentation"):
|
24 |
+
gr.Markdown(TextAbout.text_region_segment)
|
25 |
+
with gr.Tab("3. Line Segmentation"):
|
26 |
+
gr.Markdown(TextAbout.text_line_segmentation)
|
27 |
+
with gr.Tab("4. Transcriber"):
|
28 |
+
gr.Markdown(TextAbout.text_htr)
|
29 |
+
|
30 |
+
with gr.Tab("Contributions"):
|
31 |
+
with gr.Row():
|
32 |
+
gr.Markdown(TextRoadmap.text_contribution)
|
33 |
+
|
34 |
+
# with gr.Tab("API & Duplicate for own use"):
|
35 |
+
# with gr.Row():
|
36 |
+
# with gr.Column():
|
37 |
+
# gr.Markdown(TextHowTo.htr_tool_api_text)
|
38 |
+
# gr.Code(
|
39 |
+
# value=TextHowTo.code_for_api,
|
40 |
+
# language="python",
|
41 |
+
# interactive=False,
|
42 |
+
# show_label=False,
|
43 |
+
# )
|
44 |
+
# with gr.Column():
|
45 |
+
# gr.Markdown(TextHowTo.duplicatin_space_htr_text)
|
46 |
+
# gr.Markdown(TextHowTo.figure_htr_hardware)
|
47 |
+
# gr.Markdown(TextHowTo.duplicatin_for_privat)
|
48 |
+
|
49 |
+
with gr.Tab("Changelog & Roadmap"):
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column():
|
52 |
+
gr.Markdown(TextRoadmap.roadmap)
|
53 |
+
with gr.Column():
|
54 |
+
gr.Markdown(TextRoadmap.discussion)
|
tabs/help_tab.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from helper.text.text_howto import TextHowTo
|
4 |
+
|
5 |
+
with gr.Blocks() as help_tab:
|
6 |
+
gr.Markdown("lorem ipsum...")
|
7 |
+
with gr.Tabs():
|
8 |
+
with gr.Tab("Discussion & FAQ"):
|
9 |
+
pass
|
10 |
+
|
11 |
+
with gr.Tab("Fast track"):
|
12 |
+
pass
|
13 |
+
with gr.Tab("Stepwise"):
|
14 |
+
with gr.Row():
|
15 |
+
with gr.Accordion("Info", open=False) as example_accord:
|
16 |
+
with gr.Row(equal_height=False):
|
17 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool)
|
18 |
+
with gr.Row():
|
19 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab_intro)
|
20 |
+
with gr.Row():
|
21 |
+
with gr.Tabs():
|
22 |
+
with gr.Tab("1. Region Segmentation"):
|
23 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab1)
|
24 |
+
with gr.Tab("2. Line Segmentation"):
|
25 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab2)
|
26 |
+
with gr.Tab("3. Transcribe Text"):
|
27 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab3)
|
28 |
+
with gr.Tab("4. Explore Results"):
|
29 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab4)
|
30 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_end)
|
31 |
+
|
32 |
+
with gr.Tab("API"):
|
33 |
+
pass
|
34 |
+
with gr.Tab("Duplicating for own use"):
|
35 |
+
pass
|
tabs/htr_tool.py
CHANGED
@@ -4,9 +4,7 @@ from helper.examples.examples import DemoImages
|
|
4 |
from src.htr_pipeline.gradio_backend import FastTrack, SingletonModelLoader
|
5 |
|
6 |
model_loader = SingletonModelLoader()
|
7 |
-
|
8 |
fast_track = FastTrack(model_loader)
|
9 |
-
|
10 |
images_for_demo = DemoImages()
|
11 |
|
12 |
terminate = False
|
@@ -21,7 +19,7 @@ with gr.Blocks() as htr_tool_tab:
|
|
21 |
)
|
22 |
|
23 |
with gr.Row():
|
24 |
-
with gr.Tab("
|
25 |
with gr.Row():
|
26 |
stop_htr_button = gr.Button(
|
27 |
value="Stop HTR",
|
@@ -41,10 +39,10 @@ with gr.Blocks() as htr_tool_tab:
|
|
41 |
label="Download output file", visible=True, scale=1, height=100, elem_id="download_file"
|
42 |
)
|
43 |
|
44 |
-
with gr.Tab("
|
45 |
with gr.Row():
|
46 |
gr.Button(
|
47 |
-
value="
|
48 |
variant="secondary",
|
49 |
link="https://huggingface.co/spaces/Riksarkivet/Viewer_demo",
|
50 |
interactive=True,
|
@@ -58,17 +56,34 @@ with gr.Blocks() as htr_tool_tab:
|
|
58 |
interactive=False, label="Text Selector", info="Select a mask on Image Viewer to return text"
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with gr.Column(scale=4):
|
62 |
with gr.Box():
|
63 |
with gr.Row(visible=True) as output_and_setting_tab:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with gr.Column(scale=3):
|
65 |
with gr.Row():
|
66 |
with gr.Group():
|
67 |
gr.Markdown(" ⚙️ Settings ")
|
68 |
with gr.Row():
|
69 |
radio_file_input = gr.CheckboxGroup(
|
70 |
-
choices=["Txt", "XML"],
|
71 |
-
value=["Txt", "XML"],
|
72 |
label="Output file extension",
|
73 |
# info="Only txt and page xml is supported for now!",
|
74 |
scale=1,
|
@@ -84,54 +99,59 @@ with gr.Blocks() as htr_tool_tab:
|
|
84 |
label="Output prediction threshold",
|
85 |
info="Output XML with prediction score",
|
86 |
)
|
87 |
-
with gr.Row():
|
88 |
-
gr.Slider(
|
89 |
-
value=0.6,
|
90 |
-
minimum=0.5,
|
91 |
-
maximum=1,
|
92 |
-
label="HTR threshold",
|
93 |
-
info="Prediction score threshold for transcribed lines",
|
94 |
-
scale=1,
|
95 |
-
)
|
96 |
-
gr.Slider(
|
97 |
-
value=0.7,
|
98 |
-
minimum=0.6,
|
99 |
-
maximum=1,
|
100 |
-
label="Avg threshold",
|
101 |
-
info="Average prediction score for a region",
|
102 |
-
scale=1,
|
103 |
-
)
|
104 |
-
|
105 |
-
htr_tool_region_segment_model_dropdown = gr.Dropdown(
|
106 |
-
choices=["Riksarkivet/rtmdet_region"],
|
107 |
-
value="Riksarkivet/rtmdet_region",
|
108 |
-
label="Region Segment models",
|
109 |
-
info="Will add more models later!",
|
110 |
-
)
|
111 |
-
|
112 |
-
# with gr.Accordion("Transcribe settings:", open=False):
|
113 |
-
htr_tool_line_segment_model_dropdown = gr.Dropdown(
|
114 |
-
choices=["Riksarkivet/rtmdet_lines"],
|
115 |
-
value="Riksarkivet/rtmdet_lines",
|
116 |
-
label="Line Segment models",
|
117 |
-
info="Will add more models later!",
|
118 |
-
)
|
119 |
-
|
120 |
-
htr_tool_transcriber_model_dropdown = gr.Dropdown(
|
121 |
-
choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"],
|
122 |
-
value="Riksarkivet/satrn_htr",
|
123 |
-
label="Transcriber models",
|
124 |
-
info="Models will be continuously updated with future additions for specific cases.",
|
125 |
-
)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
with gr.Row(visible=False) as image_viewer_tab:
|
137 |
text_polygon_dict = gr.Variable()
|
@@ -140,6 +160,43 @@ with gr.Blocks() as htr_tool_tab:
|
|
140 |
label="Image Viewer", type="numpy", height=600, interactive=False
|
141 |
)
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
xml_rendered_placeholder_for_api = gr.Textbox(visible=False)
|
144 |
|
145 |
htr_event_click_event = htr_pipeline_button.click(
|
@@ -165,17 +222,25 @@ with gr.Blocks() as htr_tool_tab:
|
|
165 |
)
|
166 |
|
167 |
def update_selected_tab_output_and_setting():
|
168 |
-
return gr.update(visible=True), gr.update(visible=False)
|
169 |
|
170 |
def update_selected_tab_image_viewer():
|
171 |
-
return gr.update(visible=False), gr.update(visible=True)
|
|
|
|
|
|
|
172 |
|
173 |
tab_output_and_setting_selector.select(
|
174 |
-
fn=update_selected_tab_output_and_setting,
|
|
|
175 |
)
|
176 |
|
177 |
tab_image_viewer_selector.select(
|
178 |
-
fn=update_selected_tab_image_viewer, outputs=[output_and_setting_tab, image_viewer_tab]
|
|
|
|
|
|
|
|
|
179 |
)
|
180 |
|
181 |
def stop_function():
|
@@ -195,3 +260,5 @@ with gr.Blocks() as htr_tool_tab:
|
|
195 |
fast_track_output_image.select(
|
196 |
fast_track.get_text_from_coords, inputs=text_polygon_dict, outputs=selection_text_from_image_viewer
|
197 |
)
|
|
|
|
|
|
4 |
from src.htr_pipeline.gradio_backend import FastTrack, SingletonModelLoader
|
5 |
|
6 |
model_loader = SingletonModelLoader()
|
|
|
7 |
fast_track = FastTrack(model_loader)
|
|
|
8 |
images_for_demo = DemoImages()
|
9 |
|
10 |
terminate = False
|
|
|
19 |
)
|
20 |
|
21 |
with gr.Row():
|
22 |
+
with gr.Tab("Run & Settings") as tab_output_and_setting_selector:
|
23 |
with gr.Row():
|
24 |
stop_htr_button = gr.Button(
|
25 |
value="Stop HTR",
|
|
|
39 |
label="Download output file", visible=True, scale=1, height=100, elem_id="download_file"
|
40 |
)
|
41 |
|
42 |
+
with gr.Tab("Visualize results") as tab_image_viewer_selector:
|
43 |
with gr.Row():
|
44 |
gr.Button(
|
45 |
+
value="Image Viewer (demo)",
|
46 |
variant="secondary",
|
47 |
link="https://huggingface.co/spaces/Riksarkivet/Viewer_demo",
|
48 |
interactive=True,
|
|
|
56 |
interactive=False, label="Text Selector", info="Select a mask on Image Viewer to return text"
|
57 |
)
|
58 |
|
59 |
+
with gr.Tab("(WIP) Compare runs") as tab_model_compare_selector:
|
60 |
+
with gr.Box():
|
61 |
+
gr.Markdown(
|
62 |
+
"Compare different runs with uploaded Ground Truth and calculate CER. You will also be able to upload output format files"
|
63 |
+
)
|
64 |
+
|
65 |
+
calc_cer_button_fast = gr.Button("Calculate CER", variant="primary", visible=True)
|
66 |
+
|
67 |
with gr.Column(scale=4):
|
68 |
with gr.Box():
|
69 |
with gr.Row(visible=True) as output_and_setting_tab:
|
70 |
+
with gr.Column(scale=2):
|
71 |
+
fast_name_files_placeholder = gr.Markdown(visible=False)
|
72 |
+
gr.Examples(
|
73 |
+
examples=images_for_demo.examples_list,
|
74 |
+
inputs=[fast_name_files_placeholder, fast_track_input_region_image],
|
75 |
+
label="Example images",
|
76 |
+
examples_per_page=5,
|
77 |
+
)
|
78 |
+
|
79 |
with gr.Column(scale=3):
|
80 |
with gr.Row():
|
81 |
with gr.Group():
|
82 |
gr.Markdown(" ⚙️ Settings ")
|
83 |
with gr.Row():
|
84 |
radio_file_input = gr.CheckboxGroup(
|
85 |
+
choices=["Txt", "Page XML"],
|
86 |
+
value=["Txt", "Page XML"],
|
87 |
label="Output file extension",
|
88 |
# info="Only txt and page xml is supported for now!",
|
89 |
scale=1,
|
|
|
99 |
label="Output prediction threshold",
|
100 |
info="Output XML with prediction score",
|
101 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
with gr.Accordion("Models", open=False):
|
104 |
+
with gr.Group():
|
105 |
+
with gr.Row():
|
106 |
+
htr_tool_region_segment_model_dropdown = gr.Dropdown(
|
107 |
+
choices=["Riksarkivet/rtmdet_region"],
|
108 |
+
value="Riksarkivet/rtmdet_region",
|
109 |
+
label="Region segmentation models",
|
110 |
+
info="More models will be added",
|
111 |
+
)
|
112 |
+
|
113 |
+
gr.Slider(
|
114 |
+
minimum=0.4,
|
115 |
+
maximum=1,
|
116 |
+
value=0.5,
|
117 |
+
step=0.05,
|
118 |
+
label="P-threshold",
|
119 |
+
info="""Filter confidence score for a prediction score to be considered""",
|
120 |
+
)
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
htr_tool_line_segment_model_dropdown = gr.Dropdown(
|
124 |
+
choices=["Riksarkivet/rtmdet_lines"],
|
125 |
+
value="Riksarkivet/rtmdet_lines",
|
126 |
+
label="Line segmentation models",
|
127 |
+
info="More models will be added",
|
128 |
+
)
|
129 |
+
|
130 |
+
gr.Slider(
|
131 |
+
minimum=0.4,
|
132 |
+
maximum=1,
|
133 |
+
value=0.5,
|
134 |
+
step=0.05,
|
135 |
+
label="P-threshold",
|
136 |
+
info="""Filter confidence score for a prediction score to be considered""",
|
137 |
+
)
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
htr_tool_transcriber_model_dropdown = gr.Dropdown(
|
141 |
+
choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"],
|
142 |
+
value="Riksarkivet/satrn_htr",
|
143 |
+
label="Text recognition models",
|
144 |
+
info="More models will be added",
|
145 |
+
)
|
146 |
+
|
147 |
+
gr.Slider(
|
148 |
+
value=0.6,
|
149 |
+
minimum=0.5,
|
150 |
+
maximum=1,
|
151 |
+
label="HTR threshold",
|
152 |
+
info="Prediction score threshold for transcribed lines",
|
153 |
+
scale=1,
|
154 |
+
)
|
155 |
|
156 |
with gr.Row(visible=False) as image_viewer_tab:
|
157 |
text_polygon_dict = gr.Variable()
|
|
|
160 |
label="Image Viewer", type="numpy", height=600, interactive=False
|
161 |
)
|
162 |
|
163 |
+
with gr.Column(visible=False) as model_compare_selector:
|
164 |
+
with gr.Row():
|
165 |
+
gr.Radio(
|
166 |
+
choices=["Compare Page XML", "Compare different runs"],
|
167 |
+
value="Compare Page XML",
|
168 |
+
info="Compare different runs from HTRFLOW or with external runs, e.g with Transkibus ",
|
169 |
+
)
|
170 |
+
with gr.Row():
|
171 |
+
gr.UploadButton(label="Run A")
|
172 |
+
|
173 |
+
gr.UploadButton(label="Run B")
|
174 |
+
|
175 |
+
gr.UploadButton(label="Ground Truth")
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
gr.HighlightedText(
|
179 |
+
label="Text diff runs",
|
180 |
+
combine_adjacent=True,
|
181 |
+
show_legend=True,
|
182 |
+
color_map={"+": "red", "-": "green"},
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
gr.HighlightedText(
|
187 |
+
label="Text diff ground truth",
|
188 |
+
combine_adjacent=True,
|
189 |
+
show_legend=True,
|
190 |
+
color_map={"+": "red", "-": "green"},
|
191 |
+
)
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column(scale=1):
|
195 |
+
with gr.Row(equal_height=False):
|
196 |
+
cer_output_fast = gr.Textbox(label="CER:")
|
197 |
+
with gr.Column(scale=2):
|
198 |
+
pass
|
199 |
+
|
200 |
xml_rendered_placeholder_for_api = gr.Textbox(visible=False)
|
201 |
|
202 |
htr_event_click_event = htr_pipeline_button.click(
|
|
|
222 |
)
|
223 |
|
224 |
def update_selected_tab_output_and_setting():
|
225 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
226 |
|
227 |
def update_selected_tab_image_viewer():
|
228 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
229 |
+
|
230 |
+
def update_selected_tab_model_compare():
|
231 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
232 |
|
233 |
tab_output_and_setting_selector.select(
|
234 |
+
fn=update_selected_tab_output_and_setting,
|
235 |
+
outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector],
|
236 |
)
|
237 |
|
238 |
tab_image_viewer_selector.select(
|
239 |
+
fn=update_selected_tab_image_viewer, outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector]
|
240 |
+
)
|
241 |
+
|
242 |
+
tab_model_compare_selector.select(
|
243 |
+
fn=update_selected_tab_model_compare, outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector]
|
244 |
)
|
245 |
|
246 |
def stop_function():
|
|
|
260 |
fast_track_output_image.select(
|
261 |
fast_track.get_text_from_coords, inputs=text_polygon_dict, outputs=selection_text_from_image_viewer
|
262 |
)
|
263 |
+
|
264 |
+
htr_pipeline_button.click(fn=handler.store_metric_data, inputs="htr_pipeline_button")
|
tabs/stepwise_htr_tool.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import os
|
2 |
import shutil
|
|
|
3 |
|
4 |
import evaluate
|
5 |
import gradio as gr
|
6 |
|
7 |
from helper.examples.examples import DemoImages
|
8 |
-
from helper.text.text_howto import TextHowTo
|
9 |
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader
|
10 |
|
11 |
model_loader = SingletonModelLoader()
|
@@ -19,57 +19,28 @@ cer_metric = evaluate.load("cer")
|
|
19 |
|
20 |
with gr.Blocks() as stepwise_htr_tool_tab:
|
21 |
with gr.Tabs():
|
22 |
-
with gr.Tab("1. Region
|
23 |
with gr.Row():
|
24 |
-
with gr.
|
25 |
-
with gr.Row(equal_height=False):
|
26 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool)
|
27 |
-
with gr.Row():
|
28 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab_intro)
|
29 |
-
with gr.Row():
|
30 |
-
with gr.Tabs():
|
31 |
-
with gr.Tab("1. Region Segmentation"):
|
32 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab1)
|
33 |
-
with gr.Tab("2. Line Segmentation"):
|
34 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab2)
|
35 |
-
with gr.Tab("3. Transcribe Text"):
|
36 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab3)
|
37 |
-
with gr.Tab("4. Explore Results"):
|
38 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab4)
|
39 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_end)
|
40 |
-
with gr.Row():
|
41 |
-
with gr.Column(scale=2):
|
42 |
vis_data_folder_placeholder = gr.Markdown(visible=False)
|
43 |
name_files_placeholder = gr.Markdown(visible=False)
|
44 |
|
45 |
-
with gr.
|
46 |
input_region_image = gr.Image(
|
47 |
-
label="Image to
|
48 |
# type="numpy",
|
49 |
tool="editor",
|
50 |
-
height=
|
51 |
)
|
52 |
-
|
53 |
-
|
54 |
-
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
|
55 |
-
|
56 |
-
region_segment_button = gr.Button(
|
57 |
-
"Segment Region",
|
58 |
-
variant="primary",
|
59 |
-
elem_id="region_segment_button",
|
60 |
-
)
|
61 |
-
|
62 |
-
with gr.Group():
|
63 |
-
with gr.Accordion("Region segment settings:", open=False):
|
64 |
-
with gr.Row():
|
65 |
reg_pred_score_threshold_slider = gr.Slider(
|
66 |
minimum=0.4,
|
67 |
maximum=1,
|
68 |
value=0.5,
|
69 |
step=0.05,
|
70 |
label="P-threshold",
|
71 |
-
info="""Filter
|
72 |
-
required for a prediction score to be considered""",
|
73 |
)
|
74 |
reg_containments_threshold_slider = gr.Slider(
|
75 |
minimum=0,
|
@@ -81,27 +52,37 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
81 |
for a detected region or object to be considered valid""",
|
82 |
)
|
83 |
|
84 |
-
with gr.Row():
|
85 |
region_segment_model_dropdown = gr.Dropdown(
|
86 |
-
choices=["Riksarkivet/
|
87 |
-
value="Riksarkivet/
|
88 |
-
label="Region
|
89 |
-
info="
|
90 |
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
examples=images_for_demo.examples_list,
|
95 |
-
inputs=[name_files_placeholder, input_region_image],
|
96 |
-
label="Example images",
|
97 |
-
examples_per_page=5,
|
98 |
-
)
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
##############################################
|
104 |
-
with gr.Tab("2. Line
|
105 |
image_placeholder_lines = gr.Image(
|
106 |
label="Segmented lines",
|
107 |
# type="numpy",
|
@@ -112,50 +93,50 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
112 |
|
113 |
with gr.Row(visible=False) as control_line_segment:
|
114 |
with gr.Column(scale=2):
|
115 |
-
with gr.
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
)
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
)
|
159 |
with gr.Row():
|
160 |
clear_line_segment_button = gr.Button(
|
161 |
" ",
|
@@ -165,7 +146,7 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
165 |
)
|
166 |
|
167 |
line_segment_button = gr.Button(
|
168 |
-
"
|
169 |
variant="primary",
|
170 |
# elem_id="center_button",
|
171 |
scale=1,
|
@@ -179,7 +160,7 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
179 |
)
|
180 |
|
181 |
###############################################
|
182 |
-
with gr.Tab("3.
|
183 |
image_placeholder_htr = gr.Image(
|
184 |
label="Transcribed lines",
|
185 |
# type="numpy",
|
@@ -192,33 +173,45 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
192 |
inputs_lines_to_transcribe = gr.Variable()
|
193 |
|
194 |
with gr.Column(scale=2):
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
with gr.
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
with gr.Row():
|
207 |
clear_transcribe_button = gr.Button(" ", variant="Secondary", visible=True, scale=1)
|
208 |
|
209 |
-
transcribe_button = gr.Button("
|
210 |
|
211 |
with gr.Column(scale=3):
|
212 |
with gr.Row():
|
213 |
transcribed_text = gr.Textbox(
|
214 |
label="Transcribed text",
|
215 |
-
info="Transcribed text is being streamed back from the
|
216 |
-
lines=
|
217 |
value="",
|
|
|
218 |
)
|
219 |
|
220 |
#####################################
|
221 |
-
with gr.Tab("4. Explore
|
222 |
image_placeholder_explore_results = gr.Image(
|
223 |
label="Cropped transcribed lines",
|
224 |
# type="numpy",
|
@@ -229,40 +222,48 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
229 |
|
230 |
with gr.Row(visible=False, equal_height=False) as control_results_transcribe:
|
231 |
with gr.Column(scale=1, visible=True):
|
232 |
-
with gr.
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
)
|
245 |
|
246 |
-
dataframe_text_index = gr.Textbox(
|
247 |
-
label="Text from DataFrame selection",
|
248 |
-
placeholder="Select row from the DataFrame.",
|
249 |
-
interactive=False,
|
250 |
-
)
|
251 |
-
|
252 |
-
gt_text_index = gr.Textbox(
|
253 |
-
label="Ground Truth",
|
254 |
-
placeholder="Provide the ground truth, if available.",
|
255 |
-
interactive=True,
|
256 |
-
)
|
257 |
with gr.Row(equal_height=False):
|
258 |
-
calc_cer_button = gr.Button("Calculate CER", variant="primary", visible=True)
|
259 |
-
|
260 |
cer_output = gr.Textbox(label="CER:")
|
|
|
261 |
|
262 |
with gr.Column(scale=1, visible=True):
|
263 |
mapping_dict = gr.Variable()
|
264 |
transcribed_text_df_finish = gr.Dataframe(
|
265 |
-
headers=["Transcribed text", "
|
266 |
max_rows=14,
|
267 |
col_count=(2, "fixed"),
|
268 |
wrap=True,
|
@@ -272,6 +273,21 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
272 |
)
|
273 |
|
274 |
# custom track
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
region_segment_button.click(
|
276 |
custom_track.region_segment,
|
277 |
inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider],
|
@@ -318,14 +334,6 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
318 |
],
|
319 |
)
|
320 |
|
321 |
-
def compute_cer(dataframe_text_index, gt_text_index):
|
322 |
-
if gt_text_index is not None and gt_text_index.strip() != "":
|
323 |
-
return cer_metric.compute(predictions=[dataframe_text_index], references=[gt_text_index])
|
324 |
-
else:
|
325 |
-
return "Ground truth not provided"
|
326 |
-
|
327 |
-
calc_cer_button.click(compute_cer, inputs=[dataframe_text_index, gt_text_index], outputs=cer_output)
|
328 |
-
|
329 |
clear_button.click(
|
330 |
lambda: (
|
331 |
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
+
from difflib import Differ
|
4 |
|
5 |
import evaluate
|
6 |
import gradio as gr
|
7 |
|
8 |
from helper.examples.examples import DemoImages
|
|
|
9 |
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader
|
10 |
|
11 |
model_loader = SingletonModelLoader()
|
|
|
19 |
|
20 |
with gr.Blocks() as stepwise_htr_tool_tab:
|
21 |
with gr.Tabs():
|
22 |
+
with gr.Tab("1. Region segmentation"):
|
23 |
with gr.Row():
|
24 |
+
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
vis_data_folder_placeholder = gr.Markdown(visible=False)
|
26 |
name_files_placeholder = gr.Markdown(visible=False)
|
27 |
|
28 |
+
with gr.Group():
|
29 |
input_region_image = gr.Image(
|
30 |
+
label="Image to region segment",
|
31 |
# type="numpy",
|
32 |
tool="editor",
|
33 |
+
height=500,
|
34 |
)
|
35 |
+
with gr.Accordion("Settings", open=False):
|
36 |
+
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
reg_pred_score_threshold_slider = gr.Slider(
|
38 |
minimum=0.4,
|
39 |
maximum=1,
|
40 |
value=0.5,
|
41 |
step=0.05,
|
42 |
label="P-threshold",
|
43 |
+
info="""Filter the confidence score for a prediction score to be considered""",
|
|
|
44 |
)
|
45 |
reg_containments_threshold_slider = gr.Slider(
|
46 |
minimum=0,
|
|
|
52 |
for a detected region or object to be considered valid""",
|
53 |
)
|
54 |
|
|
|
55 |
region_segment_model_dropdown = gr.Dropdown(
|
56 |
+
choices=["Riksarkivet/rtm_region"],
|
57 |
+
value="Riksarkivet/rtm_region",
|
58 |
+
label="Region segmentation model",
|
59 |
+
info="More models will be added",
|
60 |
)
|
61 |
|
62 |
+
with gr.Row():
|
63 |
+
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
region_segment_button = gr.Button(
|
66 |
+
"Run",
|
67 |
+
variant="primary",
|
68 |
+
elem_id="region_segment_button",
|
69 |
+
)
|
70 |
+
|
71 |
+
with gr.Column(scale=2):
|
72 |
+
with gr.Box():
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column(scale=2):
|
75 |
+
gr.Examples(
|
76 |
+
examples=images_for_demo.examples_list,
|
77 |
+
inputs=[name_files_placeholder, input_region_image],
|
78 |
+
label="Example images",
|
79 |
+
examples_per_page=5,
|
80 |
+
)
|
81 |
+
with gr.Column(scale=3):
|
82 |
+
output_region_image = gr.Image(label="Segmented regions", type="numpy", height=600)
|
83 |
|
84 |
##############################################
|
85 |
+
with gr.Tab("2. Line segmentation"):
|
86 |
image_placeholder_lines = gr.Image(
|
87 |
label="Segmented lines",
|
88 |
# type="numpy",
|
|
|
93 |
|
94 |
with gr.Row(visible=False) as control_line_segment:
|
95 |
with gr.Column(scale=2):
|
96 |
+
with gr.Group():
|
97 |
+
with gr.Box():
|
98 |
+
regions_cropped_gallery = gr.Gallery(
|
99 |
+
label="Segmented regions",
|
100 |
+
elem_id="gallery",
|
101 |
+
columns=[2],
|
102 |
+
rows=[2],
|
103 |
+
# object_fit="contain",
|
104 |
+
height=450,
|
105 |
+
preview=True,
|
106 |
+
container=False,
|
107 |
+
)
|
108 |
|
109 |
+
input_region_from_gallery = gr.Image(
|
110 |
+
label="Region segmentation to line segment", interactive="False", visible=False, height=400
|
111 |
+
)
|
112 |
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Accordion("Settings", open=False):
|
115 |
+
with gr.Row():
|
116 |
+
line_pred_score_threshold_slider = gr.Slider(
|
117 |
+
minimum=0.3,
|
118 |
+
maximum=1,
|
119 |
+
value=0.4,
|
120 |
+
step=0.05,
|
121 |
+
label="Pred_score threshold",
|
122 |
+
info="""Filter the confidence score for a prediction score to be considered""",
|
123 |
+
)
|
124 |
+
line_containments_threshold_slider = gr.Slider(
|
125 |
+
minimum=0,
|
126 |
+
maximum=1,
|
127 |
+
value=0.5,
|
128 |
+
step=0.05,
|
129 |
+
label="Containments threshold",
|
130 |
+
info="""The minimum required overlap or similarity
|
131 |
+
for a detected region or object to be considered valid""",
|
132 |
+
)
|
133 |
+
with gr.Row(equal_height=False):
|
134 |
+
line_segment_model_dropdown = gr.Dropdown(
|
135 |
+
choices=["Riksarkivet/rtmdet_lines"],
|
136 |
+
value="Riksarkivet/rtmdet_lines",
|
137 |
+
label="Line segment model",
|
138 |
+
info="More models will be added",
|
139 |
+
)
|
|
|
140 |
with gr.Row():
|
141 |
clear_line_segment_button = gr.Button(
|
142 |
" ",
|
|
|
146 |
)
|
147 |
|
148 |
line_segment_button = gr.Button(
|
149 |
+
"Run",
|
150 |
variant="primary",
|
151 |
# elem_id="center_button",
|
152 |
scale=1,
|
|
|
160 |
)
|
161 |
|
162 |
###############################################
|
163 |
+
with gr.Tab("3. Text recognition"):
|
164 |
image_placeholder_htr = gr.Image(
|
165 |
label="Transcribed lines",
|
166 |
# type="numpy",
|
|
|
173 |
inputs_lines_to_transcribe = gr.Variable()
|
174 |
|
175 |
with gr.Column(scale=2):
|
176 |
+
with gr.Group():
|
177 |
+
image_inputs_lines_to_transcribe = gr.Image(
|
178 |
+
label="Transcribed lines", type="numpy", interactive="False", visible=False, height=470
|
179 |
+
)
|
180 |
+
with gr.Row():
|
181 |
+
with gr.Accordion("Settings", open=False):
|
182 |
+
transcriber_model = gr.Dropdown(
|
183 |
+
choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"],
|
184 |
+
value="Riksarkivet/satrn_htr",
|
185 |
+
label="Text recognition model",
|
186 |
+
info="More models will be added",
|
187 |
+
)
|
188 |
+
|
189 |
+
gr.Slider(
|
190 |
+
value=0.6,
|
191 |
+
minimum=0.5,
|
192 |
+
maximum=1,
|
193 |
+
label="HTR threshold",
|
194 |
+
info="Prediction score threshold for transcribed lines",
|
195 |
+
scale=1,
|
196 |
+
)
|
197 |
+
|
198 |
with gr.Row():
|
199 |
clear_transcribe_button = gr.Button(" ", variant="Secondary", visible=True, scale=1)
|
200 |
|
201 |
+
transcribe_button = gr.Button("Run", variant="primary", visible=True, scale=1)
|
202 |
|
203 |
with gr.Column(scale=3):
|
204 |
with gr.Row():
|
205 |
transcribed_text = gr.Textbox(
|
206 |
label="Transcribed text",
|
207 |
+
info="Transcribed text is being streamed back from the Text recognition model",
|
208 |
+
lines=26,
|
209 |
value="",
|
210 |
+
show_copy_button=True,
|
211 |
)
|
212 |
|
213 |
#####################################
|
214 |
+
with gr.Tab("4. Explore results"):
|
215 |
image_placeholder_explore_results = gr.Image(
|
216 |
label="Cropped transcribed lines",
|
217 |
# type="numpy",
|
|
|
222 |
|
223 |
with gr.Row(visible=False, equal_height=False) as control_results_transcribe:
|
224 |
with gr.Column(scale=1, visible=True):
|
225 |
+
with gr.Group():
|
226 |
+
with gr.Box():
|
227 |
+
temp_gallery_input = gr.Variable()
|
228 |
+
|
229 |
+
gallery_inputs_lines_to_transcribe = gr.Gallery(
|
230 |
+
label="Cropped transcribed lines",
|
231 |
+
elem_id="gallery_lines",
|
232 |
+
columns=[3],
|
233 |
+
rows=[3],
|
234 |
+
# object_fit="contain",
|
235 |
+
height=150,
|
236 |
+
preview=True,
|
237 |
+
container=False,
|
238 |
+
)
|
239 |
+
with gr.Row():
|
240 |
+
dataframe_text_index = gr.Textbox(
|
241 |
+
label="Text from DataFrame selection",
|
242 |
+
placeholder="Select row from the DataFrame.",
|
243 |
+
interactive=False,
|
244 |
+
)
|
245 |
+
with gr.Row():
|
246 |
+
gt_text_index = gr.Textbox(
|
247 |
+
label="Ground Truth",
|
248 |
+
placeholder="Provide the ground truth, if available.",
|
249 |
+
interactive=True,
|
250 |
+
)
|
251 |
+
with gr.Row():
|
252 |
+
diff_token_output = gr.HighlightedText(
|
253 |
+
label="Text diff",
|
254 |
+
combine_adjacent=True,
|
255 |
+
show_legend=True,
|
256 |
+
color_map={"+": "red", "-": "green"},
|
257 |
)
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
with gr.Row(equal_height=False):
|
|
|
|
|
260 |
cer_output = gr.Textbox(label="CER:")
|
261 |
+
calc_cer_button = gr.Button("Calculate CER", variant="primary", visible=True)
|
262 |
|
263 |
with gr.Column(scale=1, visible=True):
|
264 |
mapping_dict = gr.Variable()
|
265 |
transcribed_text_df_finish = gr.Dataframe(
|
266 |
+
headers=["Transcribed text", "Pred score"],
|
267 |
max_rows=14,
|
268 |
col_count=(2, "fixed"),
|
269 |
wrap=True,
|
|
|
273 |
)
|
274 |
|
275 |
# custom track
|
276 |
+
|
277 |
+
def diff_texts(text1, text2):
|
278 |
+
d = Differ()
|
279 |
+
return [(token[2:], token[0] if token[0] != " " else None) for token in d.compare(text1, text2)]
|
280 |
+
|
281 |
+
def compute_cer(dataframe_text_index, gt_text_index):
|
282 |
+
if gt_text_index is not None and gt_text_index.strip() != "":
|
283 |
+
return cer_metric.compute(predictions=[dataframe_text_index], references=[gt_text_index])
|
284 |
+
else:
|
285 |
+
return "Ground truth not provided"
|
286 |
+
|
287 |
+
calc_cer_button.click(compute_cer, inputs=[dataframe_text_index, gt_text_index], outputs=cer_output)
|
288 |
+
|
289 |
+
calc_cer_button.click(diff_texts, inputs=[dataframe_text_index, gt_text_index], outputs=[diff_token_output])
|
290 |
+
|
291 |
region_segment_button.click(
|
292 |
custom_track.region_segment,
|
293 |
inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider],
|
|
|
334 |
],
|
335 |
)
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
clear_button.click(
|
338 |
lambda: (
|
339 |
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
|