Gabriel commited on
Commit
089249c
·
1 Parent(s): 60af1a7

refactored redid the ui of fast track

Browse files
app.py CHANGED
@@ -118,7 +118,7 @@ print(job.result())
118
  # demo.load(None, None, None, _js=js)
119
 
120
 
121
- demo.queue(concurrency_count=1, max_size=1)
122
 
123
 
124
  if __name__ == "__main__":
 
118
  # demo.load(None, None, None, _js=js)
119
 
120
 
121
+ demo.queue(concurrency_count=2, max_size=2)
122
 
123
 
124
  if __name__ == "__main__":
helper/gradio_config.py CHANGED
@@ -22,6 +22,7 @@ class GradioConfig:
22
  #gallery {height: 400px}
23
  .fixed-height.svelte-g4rw9.svelte-g4rw9 {min-height: 400px;}
24
 
 
25
  #gallery_lines > div.preview.svelte-1b19cri > div.thumbnails.scroll-hide.svelte-1b19cri {display: none;}
26
 
27
  """
 
22
  #gallery {height: 400px}
23
  .fixed-height.svelte-g4rw9.svelte-g4rw9 {min-height: 400px;}
24
 
25
+ #download_file > div.empty.svelte-lk9eg8.large.unpadded_box {min-height: 100px;}
26
  #gallery_lines > div.preview.svelte-1b19cri > div.thumbnails.scroll-hide.svelte-1b19cri {display: none;}
27
 
28
  """
src/htr_pipeline/gradio_backend.py CHANGED
@@ -1,6 +1,8 @@
1
  import os
2
 
 
3
  import gradio as gr
 
4
  import pandas as pd
5
 
6
  from src.htr_pipeline.inferencer import Inferencer, InferencerInterface
@@ -23,13 +25,21 @@ class SingletonModelLoader:
23
  self.pipeline = Pipeline(self.inferencer)
24
 
25
 
 
 
 
 
 
 
26
  # fast track
27
  class FastTrack:
28
  def __init__(self, model_loader):
29
  self.pipeline: PipelineInterface = model_loader.pipeline
30
 
31
  def segment_to_xml(self, image, radio_button_choices):
32
- gr.Info("Running HTR-pipeline")
 
 
33
  xml_xml = "page_xml.xml"
34
  xml_txt = "page_txt.txt"
35
 
@@ -41,10 +51,18 @@ class FastTrack:
41
  with open(xml_xml, "w") as f:
42
  f.write(rendered_xml)
43
 
44
- xml_img = self.visualize_xml_and_return_txt(image, xml_txt)
 
 
 
 
45
  returned_file_extension = self.file_extenstion_to_return(radio_button_choices, xml_xml, xml_txt)
46
 
47
- return xml_img, returned_file_extension, gr.update(visible=True)
 
 
 
 
48
 
49
  def file_extenstion_to_return(self, radio_button_choices, xml_xml, xml_txt):
50
  if len(radio_button_choices) < 2:
@@ -56,20 +74,19 @@ class FastTrack:
56
  returned_file_extension = [xml_txt, xml_xml]
57
  return returned_file_extension
58
 
 
 
 
 
 
 
 
 
 
59
  def segment_to_xml_api(self, image):
60
  rendered_xml = self.pipeline.running_htr_pipeline(image)
61
  return rendered_xml
62
 
63
- def visualize_xml_and_return_txt(self, img, xml_txt):
64
- xml_img = self.pipeline.visualize_xml(img)
65
-
66
- if os.path.exists(f"./{xml_txt}"):
67
- os.remove(f"./{xml_txt}")
68
-
69
- self.pipeline.parse_xml_to_txt()
70
-
71
- return xml_img
72
-
73
 
74
  # Custom track
75
  class CustomTrack:
 
1
  import os
2
 
3
+ import cv2
4
  import gradio as gr
5
+ import numpy as np
6
  import pandas as pd
7
 
8
  from src.htr_pipeline.inferencer import Inferencer, InferencerInterface
 
25
  self.pipeline = Pipeline(self.inferencer)
26
 
27
 
28
+ def handling_callback_stop_inferencer():
29
+ from src.htr_pipeline.utils import pipeline_inferencer
30
+
31
+ pipeline_inferencer.terminate = False
32
+
33
+
34
  # fast track
35
  class FastTrack:
36
  def __init__(self, model_loader):
37
  self.pipeline: PipelineInterface = model_loader.pipeline
38
 
39
  def segment_to_xml(self, image, radio_button_choices):
40
+ handling_callback_stop_inferencer()
41
+
42
+ gr.Info("Excuting HTR on image")
43
  xml_xml = "page_xml.xml"
44
  xml_txt = "page_txt.txt"
45
 
 
51
  with open(xml_xml, "w") as f:
52
  f.write(rendered_xml)
53
 
54
+ if os.path.exists(f"./{xml_txt}"):
55
+ os.remove(f"./{xml_txt}")
56
+
57
+ self.pipeline.parse_xml_to_txt()
58
+
59
  returned_file_extension = self.file_extenstion_to_return(radio_button_choices, xml_xml, xml_txt)
60
 
61
+ return returned_file_extension, gr.update(visible=True)
62
+
63
+ def visualize_image_viewer(self, image):
64
+ xml_img, text_polygon_dict = self.pipeline.visualize_xml(image)
65
+ return xml_img, text_polygon_dict
66
 
67
  def file_extenstion_to_return(self, radio_button_choices, xml_xml, xml_txt):
68
  if len(radio_button_choices) < 2:
 
74
  returned_file_extension = [xml_txt, xml_xml]
75
  return returned_file_extension
76
 
77
+ def get_text_from_coords(self, text_polygon_dict, evt: gr.SelectData):
78
+ x, y = evt.index[0], evt.index[1]
79
+
80
+ for text, polygon_coords in text_polygon_dict.items():
81
+ if (
82
+ cv2.pointPolygonTest(np.array(polygon_coords), (x, y), False) >= 0
83
+ ): # >= 0 means on the polygon or inside
84
+ return text
85
+
86
  def segment_to_xml_api(self, image):
87
  rendered_xml = self.pipeline.running_htr_pipeline(image)
88
  return rendered_xml
89
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  # Custom track
92
  class CustomTrack:
src/htr_pipeline/pipeline.py CHANGED
@@ -40,8 +40,8 @@ class Pipeline:
40
  def visualize_xml(self, input_image: np.ndarray) -> np.ndarray:
41
  xml_viz = XmlViz()
42
  bin_input_image = self.preprocess_img.binarize_img(input_image)
43
- xml_image = xml_viz.visualize_xml(bin_input_image)
44
- return xml_image
45
 
46
  @timer_func
47
  def parse_xml_to_txt(self) -> None:
 
40
  def visualize_xml(self, input_image: np.ndarray) -> np.ndarray:
41
  xml_viz = XmlViz()
42
  bin_input_image = self.preprocess_img.binarize_img(input_image)
43
+ xml_image, text_polygon_dict = xml_viz.visualize_xml(bin_input_image)
44
+ return xml_image, text_polygon_dict
45
 
46
  @timer_func
47
  def parse_xml_to_txt(self) -> None:
src/htr_pipeline/utils/pipeline_inferencer.py CHANGED
@@ -4,6 +4,8 @@ from tqdm import tqdm
4
  from src.htr_pipeline.utils.process_segmask import SegMaskHelper
5
  from src.htr_pipeline.utils.xml_helper import XMLHelper
6
 
 
 
7
 
8
  class PipelineInferencer:
9
  def __init__(self, process_seg_mask: SegMaskHelper, xml_helper: XMLHelper):
@@ -29,6 +31,8 @@ class PipelineInferencer:
29
  containments_threshold,
30
  htr_threshold=0.7,
31
  ):
 
 
32
  _, regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered = inferencer.predict_regions(
33
  image,
34
  pred_score_threshold=pred_score_threshold_regions,
@@ -38,6 +42,8 @@ class PipelineInferencer:
38
  gr.Info(f"Found {len(regions_cropped_ordered)} Regions to parse")
39
  region_data_list = []
40
  for i, data in tqdm(enumerate(zip(regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered))):
 
 
41
  region_data = self._create_region_data(
42
  data, i, inferencer, pred_score_threshold_lines, containments_threshold, htr_threshold
43
  )
@@ -68,7 +74,7 @@ class PipelineInferencer:
68
  region_data["textLines"] = text_lines
69
  mean_htr_score = sum(htr_scores) / len(htr_scores) if htr_scores else 0
70
 
71
- return region_data if mean_htr_score > htr_threshold else None
72
 
73
  def _process_lines(
74
  self, text_region, inferencer, pred_score_threshold, containments_threshold, mask, region_id, htr_threshold=0.7
@@ -90,7 +96,11 @@ class PipelineInferencer:
90
 
91
  gr.Info(f" Region {id_number}, found {total_lines_len} lines to parse and transcribe.")
92
 
 
 
93
  for index, (line, line_pol) in enumerate(zip(lines_cropped_ordered, line_polygons_ordered_trans)):
 
 
94
  line_data, htr_score = self._create_line_data(line, line_pol, index, region_id, inferencer, htr_threshold)
95
 
96
  if line_data:
 
4
  from src.htr_pipeline.utils.process_segmask import SegMaskHelper
5
  from src.htr_pipeline.utils.xml_helper import XMLHelper
6
 
7
+ terminate = False
8
+
9
 
10
  class PipelineInferencer:
11
  def __init__(self, process_seg_mask: SegMaskHelper, xml_helper: XMLHelper):
 
31
  containments_threshold,
32
  htr_threshold=0.7,
33
  ):
34
+ global terminate
35
+
36
  _, regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered = inferencer.predict_regions(
37
  image,
38
  pred_score_threshold=pred_score_threshold_regions,
 
42
  gr.Info(f"Found {len(regions_cropped_ordered)} Regions to parse")
43
  region_data_list = []
44
  for i, data in tqdm(enumerate(zip(regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered))):
45
+ if terminate:
46
+ break
47
  region_data = self._create_region_data(
48
  data, i, inferencer, pred_score_threshold_lines, containments_threshold, htr_threshold
49
  )
 
74
  region_data["textLines"] = text_lines
75
  mean_htr_score = sum(htr_scores) / len(htr_scores) if htr_scores else 0
76
 
77
+ return region_data if mean_htr_score > htr_threshold + 0.1 else None
78
 
79
  def _process_lines(
80
  self, text_region, inferencer, pred_score_threshold, containments_threshold, mask, region_id, htr_threshold=0.7
 
96
 
97
  gr.Info(f" Region {id_number}, found {total_lines_len} lines to parse and transcribe.")
98
 
99
+ global terminate
100
+
101
  for index, (line, line_pol) in enumerate(zip(lines_cropped_ordered, line_polygons_ordered_trans)):
102
+ if terminate:
103
+ break
104
  line_data, htr_score = self._create_line_data(line, line_pol, index, region_id, inferencer, htr_threshold)
105
 
106
  if line_data:
src/htr_pipeline/utils/visualize_xml.py CHANGED
@@ -1,8 +1,8 @@
1
  import random
2
  import xml.etree.ElementTree as ET
3
 
4
- import gradio as gr
5
- from PIL import Image, ImageDraw, ImageFont
6
 
7
 
8
  class XmlViz:
@@ -11,58 +11,24 @@ class XmlViz:
11
  self.root = self.tree.getroot()
12
  self.namespace = "{http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15}"
13
 
14
- def visualize_xml(
15
- self,
16
- background_image,
17
- font_size=9,
18
- text_offset=10,
19
- font_path_tff="./src/htr_pipeline/utils/templates/arial.ttf",
20
- ):
21
- image = Image.fromarray(background_image).convert("RGBA")
22
-
23
- text_offset = -text_offset
24
- base_font_size = font_size
25
- font_path = font_path_tff
26
-
27
- max_bbox_width = 0 # Initialize maximum bounding box width
28
- gr.Info("Parsing XML to visualize the data.")
29
- for textregion in self.root.findall(f".//{self.namespace}TextRegion"):
30
- coords = textregion.find(f"{self.namespace}Coords").attrib["points"].split()
31
- points = [tuple(map(int, point.split(","))) for point in coords]
32
- x_coords, y_coords = zip(*points)
33
- min_x, max_x = min(x_coords), max(x_coords)
34
- bbox_width = max_x - min_x # Width of the current bounding box
35
- max_bbox_width = max(max_bbox_width, bbox_width) # Update maximum bounding box width
36
-
37
- scaling_factor = max_bbox_width / 400.0 # Use maximum bounding box width for scaling
38
- font_size_scaled = int(base_font_size * scaling_factor)
39
- font = ImageFont.truetype(font_path, font_size_scaled)
40
 
41
  for textregion in self.root.findall(f".//{self.namespace}TextRegion"):
42
- fill_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 100)
43
  for textline in textregion.findall(f".//{self.namespace}TextLine"):
44
  coords = textline.find(f"{self.namespace}Coords").attrib["points"].split()
45
  points = [tuple(map(int, point.split(","))) for point in coords]
46
-
47
- poly_image = Image.new("RGBA", image.size)
48
- poly_draw = ImageDraw.Draw(poly_image)
49
- poly_draw.polygon(points, fill=fill_color)
50
 
51
  text = textline.find(f"{self.namespace}TextEquiv").find(f"{self.namespace}Unicode").text
 
52
 
53
- x_coords, y_coords = zip(*points)
54
- min_x, max_x = min(x_coords), max(x_coords)
55
- min_y = min(y_coords)
56
- text_width, text_height = poly_draw.textsize(text, font=font) # Get text size
57
- text_position = (
58
- (min_x + max_x) // 2 - text_width // 2,
59
- min_y + text_offset,
60
- ) # Center text horizontally
61
-
62
- poly_draw.text(text_position, text, fill=(0, 0, 0), font=font)
63
- image = Image.alpha_composite(image, poly_image)
64
 
65
- return image
66
 
67
 
68
  if __name__ == "__main__":
 
1
  import random
2
  import xml.etree.ElementTree as ET
3
 
4
+ import cv2
5
+ import numpy as np
6
 
7
 
8
  class XmlViz:
 
11
  self.root = self.tree.getroot()
12
  self.namespace = "{http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15}"
13
 
14
+ def visualize_xml(self, background_image):
15
+ overlay = background_image.copy()
16
+ text_polygon_dict = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  for textregion in self.root.findall(f".//{self.namespace}TextRegion"):
19
+ fill_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
20
  for textline in textregion.findall(f".//{self.namespace}TextLine"):
21
  coords = textline.find(f"{self.namespace}Coords").attrib["points"].split()
22
  points = [tuple(map(int, point.split(","))) for point in coords]
23
+ cv2.fillPoly(overlay, [np.array(points)], fill_color)
 
 
 
24
 
25
  text = textline.find(f"{self.namespace}TextEquiv").find(f"{self.namespace}Unicode").text
26
+ text_polygon_dict[text] = points
27
 
28
+ # Blend the overlay with the original image
29
+ cv2.addWeighted(overlay, 0.5, background_image, 0.5, 0, background_image)
 
 
 
 
 
 
 
 
 
30
 
31
+ return background_image, text_polygon_dict
32
 
33
 
34
  if __name__ == "__main__":
tabs/htr_tool.py CHANGED
@@ -9,6 +9,8 @@ fast_track = FastTrack(model_loader)
9
 
10
  images_for_demo = DemoImages()
11
 
 
 
12
 
13
  with gr.Blocks() as htr_tool_tab:
14
  with gr.Row(equal_height=True):
@@ -19,54 +21,131 @@ with gr.Blocks() as htr_tool_tab:
19
  )
20
 
21
  with gr.Row():
22
- radio_file_input = gr.CheckboxGroup(
23
- choices=["Txt", "XML"],
24
- value=["XML"],
25
- label="Output file extension",
26
- # info="Only txt and page xml is supported for now!",
27
- scale=1,
28
- )
29
 
30
- htr_pipeline_button = gr.Button(
31
- "Run HTR", variant="primary", visible=True, elem_id="run_pipeline_button", scale=1
32
- )
33
- with gr.Group():
34
- with gr.Row():
35
- fast_file_downlod = gr.File(label="Download output file", visible=False)
36
- with gr.Row():
37
- with gr.Accordion("Example images to use:", open=False) as fast_example_accord:
38
- fast_name_files_placeholder = gr.Markdown(visible=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
 
 
40
  gr.Examples(
41
  examples=images_for_demo.examples_list,
42
  inputs=[fast_name_files_placeholder, fast_track_input_region_image],
43
  label="Example images",
44
  examples_per_page=5,
45
  )
46
- with gr.Row():
47
- gr.Markdown(
48
- """
49
- Image viewer for xml output:
50
- <p align="center">
51
- <a href="https://huggingface.co/spaces/Riksarkivet/Viewer_demo">
52
- <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-xl-dark.svg" alt="Badge 1">
53
- </a>
54
- </p>
55
-
56
- """
57
- )
58
 
59
- with gr.Column(scale=4):
60
- fast_track_output_image = gr.Image(label="HTR results visualizer", type="numpy", tool="editor", height=650)
61
 
62
- with gr.Row(visible=False) as api_placeholder:
63
- htr_pipeline_button_api = gr.Button("Run pipeline", variant="primary", visible=False, scale=1)
 
64
 
65
  xml_rendered_placeholder_for_api = gr.Textbox(visible=False)
66
- htr_pipeline_button.click(
 
67
  fast_track.segment_to_xml,
68
  inputs=[fast_track_input_region_image, radio_file_input],
69
- outputs=[fast_track_output_image, fast_file_downlod, fast_file_downlod],
70
  )
71
 
72
  htr_pipeline_button_api.click(
@@ -75,3 +154,35 @@ with gr.Blocks() as htr_tool_tab:
75
  outputs=[xml_rendered_placeholder_for_api],
76
  api_name="predict",
77
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  images_for_demo = DemoImages()
11
 
12
+ terminate = False
13
+
14
 
15
  with gr.Blocks() as htr_tool_tab:
16
  with gr.Row(equal_height=True):
 
21
  )
22
 
23
  with gr.Row():
24
+ with gr.Tab("Output and Settings") as tab_output_and_setting_selector:
25
+ with gr.Row():
26
+ stop_htr_button = gr.Button(
27
+ value="Stop HTR",
28
+ variant="stop",
29
+ )
 
30
 
31
+ htr_pipeline_button = gr.Button(
32
+ "Run HTR",
33
+ variant="primary",
34
+ visible=True,
35
+ elem_id="run_pipeline_button",
36
+ )
37
+
38
+ htr_pipeline_button_api = gr.Button("Run pipeline", variant="primary", visible=False, scale=1)
39
+
40
+ fast_file_downlod = gr.File(
41
+ label="Download output file", visible=True, scale=1, height=100, elem_id="download_file"
42
+ )
43
+
44
+ with gr.Tab("Image Viewer") as tab_image_viewer_selector:
45
+ with gr.Row():
46
+ gr.Button(
47
+ value="External Image Viewer",
48
+ variant="secondary",
49
+ link="https://huggingface.co/spaces/Riksarkivet/Viewer_demo",
50
+ interactive=True,
51
+ )
52
+
53
+ run_image_visualizer_button = gr.Button(
54
+ value="Visualize results", variant="primary", interactive=True
55
+ )
56
+
57
+ selection_text_from_image_viewer = gr.Textbox(
58
+ interactive=False, label="Text Selector", info="Select a mask on Image Viewer to return text"
59
+ )
60
+
61
+ with gr.Column(scale=4):
62
+ with gr.Box():
63
+ with gr.Row(visible=True) as output_and_setting_tab:
64
+ with gr.Column(scale=3):
65
+ with gr.Row():
66
+ with gr.Group():
67
+ gr.Markdown(" &nbsp; ⚙️ Settings ")
68
+ with gr.Row():
69
+ radio_file_input = gr.CheckboxGroup(
70
+ choices=["Txt", "XML"],
71
+ value=["XML"],
72
+ label="Output file extension",
73
+ # info="Only txt and page xml is supported for now!",
74
+ scale=1,
75
+ )
76
+ with gr.Row():
77
+ gr.Checkbox(
78
+ value=True,
79
+ label="Binarize image",
80
+ info="Binarize image to reduce background noise",
81
+ )
82
+ gr.Checkbox(
83
+ value=True,
84
+ label="Output prediction threshold",
85
+ info="Output XML with prediction score",
86
+ )
87
+ with gr.Row():
88
+ gr.Slider(
89
+ value=0.7,
90
+ minimum=0.5,
91
+ maximum=1,
92
+ label="HTR threshold",
93
+ info="Prediction score threshold for transcribed lines",
94
+ scale=1,
95
+ )
96
+ gr.Slider(
97
+ value=0.8,
98
+ minimum=0.6,
99
+ maximum=1,
100
+ label="Avg threshold",
101
+ info="Average prediction score for a region",
102
+ scale=1,
103
+ )
104
+
105
+ htr_tool_region_segment_model_dropdown = gr.Dropdown(
106
+ choices=["Riksarkivet/RmtDet_region"],
107
+ value="Riksarkivet/RmtDet_region",
108
+ label="Region segment model",
109
+ info="Will add more models later!",
110
+ )
111
+
112
+ # with gr.Accordion("Transcribe settings:", open=False):
113
+ htr_tool_line_segment_model_dropdown = gr.Dropdown(
114
+ choices=["Riksarkivet/RmtDet_lines"],
115
+ value="Riksarkivet/RmtDet_lines",
116
+ label="Line segment model",
117
+ info="Will add more models later!",
118
+ )
119
+
120
+ htr_tool_transcriber_model_dropdown = gr.Dropdown(
121
+ choices=["Riksarkivet/SATRN_transcriber", "microsoft/trocr-base-handwritten"],
122
+ value="Riksarkivet/SATRN_transcriber",
123
+ label="Transcribe model",
124
+ info="Will add more models later!",
125
+ )
126
 
127
+ with gr.Column(scale=2):
128
+ fast_name_files_placeholder = gr.Markdown(visible=False)
129
  gr.Examples(
130
  examples=images_for_demo.examples_list,
131
  inputs=[fast_name_files_placeholder, fast_track_input_region_image],
132
  label="Example images",
133
  examples_per_page=5,
134
  )
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
+ with gr.Row(visible=False) as image_viewer_tab:
137
+ text_polygon_dict = gr.Variable()
138
 
139
+ fast_track_output_image = gr.Image(
140
+ label="Image Viewer", type="numpy", height=600, interactive=False
141
+ )
142
 
143
  xml_rendered_placeholder_for_api = gr.Textbox(visible=False)
144
+
145
+ htr_event_click_event = htr_pipeline_button.click(
146
  fast_track.segment_to_xml,
147
  inputs=[fast_track_input_region_image, radio_file_input],
148
+ outputs=[fast_file_downlod, fast_file_downlod],
149
  )
150
 
151
  htr_pipeline_button_api.click(
 
154
  outputs=[xml_rendered_placeholder_for_api],
155
  api_name="predict",
156
  )
157
+
158
+ def update_selected_tab_output_and_setting():
159
+ return gr.update(visible=True), gr.update(visible=False)
160
+
161
+ def update_selected_tab_image_viewer():
162
+ return gr.update(visible=False), gr.update(visible=True)
163
+
164
+ tab_output_and_setting_selector.select(
165
+ fn=update_selected_tab_output_and_setting, outputs=[output_and_setting_tab, image_viewer_tab]
166
+ )
167
+
168
+ tab_image_viewer_selector.select(
169
+ fn=update_selected_tab_image_viewer, outputs=[output_and_setting_tab, image_viewer_tab]
170
+ )
171
+
172
+ def stop_function():
173
+ from src.htr_pipeline.utils import pipeline_inferencer
174
+
175
+ pipeline_inferencer.terminate = True
176
+ gr.Info("The HTR execution was halted")
177
+
178
+ stop_htr_button.click(fn=stop_function, inputs=None, outputs=None, cancels=[htr_event_click_event])
179
+
180
+ run_image_visualizer_button.click(
181
+ fn=fast_track.visualize_image_viewer,
182
+ inputs=fast_track_input_region_image,
183
+ outputs=[fast_track_output_image, text_polygon_dict],
184
+ )
185
+
186
+ fast_track_output_image.select(
187
+ fast_track.get_text_from_coords, inputs=text_polygon_dict, outputs=selection_text_from_image_viewer
188
+ )