File size: 4,820 Bytes
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import re
from datetime import datetime

import jinja2
from tqdm import tqdm

from src.htr_pipeline.inferencer import InferencerInterface
from src.htr_pipeline.utils.process_segmask import SegMaskHelper


class XMLHelper:
    def __init__(self):
        self.process_seg_mask = SegMaskHelper()

    def image_to_page_xml(
        self,
        image,
        pred_score_threshold_regions,
        pred_score_threshold_lines,
        containments_threshold,
        inferencer: InferencerInterface,
        xml_file_name="page_xml.xml",
    ):
        img_height = image.shape[0]
        img_width = image.shape[1]
        img_file_name = xml_file_name

        template_data = self.prepare_template_data(img_file_name, img_width, img_height)

        template_data["textRegions"] = self._process_regions(
            image,
            inferencer,
            pred_score_threshold_regions,
            pred_score_threshold_lines,
            containments_threshold,
        )

        rendered_xml = self._render_xml(template_data)

        return rendered_xml

    def _transform_coords(self, input_string):
        pattern = r"\[\s*([^\s,]+)\s*,\s*([^\s\]]+)\s*\]"
        replacement = r"\1,\2"
        return re.sub(pattern, replacement, input_string)

    def _render_xml(self, template_data):
        template_loader = jinja2.FileSystemLoader(searchpath="./src/htr_pipeline/utils/templates")
        template_env = jinja2.Environment(loader=template_loader, trim_blocks=True)
        template = template_env.get_template("page_xml_2013.xml")
        rendered_xml = template.render(template_data)
        rendered_xml = self._transform_coords(rendered_xml)
        return rendered_xml

    def prepare_template_data(self, img_file_name, img_width, img_height):
        now = datetime.now()
        date_time = now.strftime("%Y-%m-%d, %H:%M:%S")
        return {
            "created": date_time,
            "imageFilename": img_file_name,
            "imageWidth": img_width,
            "imageHeight": img_height,
            "textRegions": list(),
        }

    def _process_regions(
        self,
        image,
        inferencer: InferencerInterface,
        pred_score_threshold_regions,
        pred_score_threshold_lines,
        containments_threshold,
        htr_threshold=0.7,
    ):
        _, regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered = inferencer.predict_regions(
            image,
            pred_score_threshold=pred_score_threshold_regions,
            containments_threshold=containments_threshold,
            visualize=False,
        )

        region_data_list = []
        for i, (text_region, reg_pol, mask) in tqdm(
            enumerate(zip(regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered))
        ):
            region_id = "region_" + str(i)
            region_data = dict()
            region_data["id"] = region_id
            region_data["boundary"] = reg_pol

            text_lines, htr_scores = self._process_lines(
                text_region,
                inferencer,
                pred_score_threshold_lines,
                containments_threshold,
                mask,
                region_id,
            )

            if text_lines is None:
                continue

            region_data["textLines"] = text_lines
            mean_htr_score = sum(htr_scores) / len(htr_scores)

            if mean_htr_score > htr_threshold:
                region_data_list.append(region_data)

        return region_data_list

    def _process_lines(
        self,
        text_region,
        inferencer: InferencerInterface,
        pred_score_threshold_lines,
        containments_threshold,
        mask,
        region_id,
        htr_threshold=0.7,
    ):
        _, lines_cropped_ordered, line_polygons_ordered = inferencer.predict_lines(
            text_region,
            pred_score_threshold=pred_score_threshold_lines,
            containments_threshold=containments_threshold,
            visualize=False,
            custom_track=False,
        )

        if lines_cropped_ordered is None:
            return None, None

        line_polygons_ordered_trans = self.process_seg_mask._translate_line_coords(mask, line_polygons_ordered)

        htr_scores = list()
        text_lines = list()

        for j, (line, line_pol) in enumerate(zip(lines_cropped_ordered, line_polygons_ordered_trans)):
            line_id = "line_" + region_id + "_" + str(j)
            line_data = dict()
            line_data["id"] = line_id
            line_data["boundary"] = line_pol

            line_data["unicode"], htr_score = inferencer.transcribe(line)
            htr_scores.append(htr_score)

            if htr_score > htr_threshold:
                text_lines.append(line_data)

        return text_lines, htr_scores