Spaces:
Runtime error
Runtime error
RikeshSilwal
commited on
Commit
•
5cacb9c
1
Parent(s):
6308522
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
from datasets import Audio, load_dataset
|
5 |
-
|
6 |
import torchaudio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from torchaudio.transforms import Resample
|
|
|
8 |
|
9 |
|
10 |
-
# load model and processor
|
11 |
-
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
|
12 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
|
13 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(language="hindi", task="transcribe")
|
14 |
|
15 |
|
16 |
|
17 |
def transcribe_audio(audio_file):
|
18 |
input_arr, sampling_rate =torchaudio.load(audio_file)
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
33 |
-
print(transcription)
|
34 |
-
return transcription[0]
|
35 |
|
36 |
audio_input = gr.inputs.Audio(source="upload", type="filepath")
|
37 |
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import torch
|
|
|
|
|
4 |
import torchaudio
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
7 |
+
import pandas as pd
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
13 |
+
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
14 |
+
|
15 |
from torchaudio.transforms import Resample
|
16 |
+
import numpy as np
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
|
22 |
def transcribe_audio(audio_file):
|
23 |
input_arr, sampling_rate =torchaudio.load(audio_file)
|
24 |
+
resampler = Resample(orig_freq=sampling_rate, new_freq=16000)
|
25 |
+
input_arr = resampler(input_arr).squeeze().numpy()
|
26 |
+
sampling_rate = 16000
|
27 |
+
inputs = processor(input_arr, sampling_rate=16_000, return_tensors="pt", padding=True)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
31 |
+
|
32 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
33 |
+
|
34 |
+
predicted_words= processor.batch_decode(predicted_ids)
|
35 |
+
|
36 |
+
return predicted_words[0]
|
|
|
|
|
|
|
37 |
|
38 |
audio_input = gr.inputs.Audio(source="upload", type="filepath")
|
39 |
|