awajstt / app.py
RikeshSilwal's picture
Update app.py
ab38e60 verified
raw
history blame
2.17 kB
import gradio as gr
import librosa
import torch
import torchaudio
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import pandas as pd
from sklearn.model_selection import train_test_split
from noisereduce.torchgate import TorchGate as TG
import re
from pydub import AudioSegment
from torchaudio.transforms import Resample
import numpy as np
def transcribe_audio(audio_file):
audio = AudioSegment.from_wav(audio_file)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
input_arr, sampling_rate =librosa.load(audio_file)
# Create TorchGating instance
tg = TG(sr=sampling_rate, nonstationary=True).to(device)
try:
input_arr = tg(input_arr)
except:
input_arr = input_arr
if sampling_rate != 16000:
input_arr = librosa.resample(input_arr, orig_sr=sampling_rate, target_sr=16000)
MODEL_NAME = "rikeshsilwalekg/whisper-small-wer35-ekg"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_NAME, torch_dtype=torch_dtype, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=False,
torch_dtype=torch_dtype,
device=device,
)
# return_timestamps=True for sentence level timestaps
# for word level timestamps return_timestamps="word"
prediction = pipe(input_arr)
prediction = prediction['text']
audio_input = gr.inputs.Audio(source="upload", type="filepath")
iface = gr.Interface(fn=transcribe_audio, inputs=audio_input,
outputs=["textbox"], title="Nepali Speech To Text",
description="Upload an audio file and hit the 'Submit'\
button")
iface.launch(inline=False)