Rifky commited on
Commit
e334543
·
1 Parent(s): 7b93d2e

remove trainer

Browse files
Files changed (2) hide show
  1. __pycache__/Scraper.cpython-310.pyc +0 -0
  2. app.py +4 -4
__pycache__/Scraper.cpython-310.pyc ADDED
Binary file (654 Bytes). View file
 
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import re
4
  import time
5
 
6
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer
7
  from Scraper import Scrap
8
 
9
  st.set_page_config(layout="wide")
@@ -15,7 +15,7 @@ label = {0: "valid", 1: "fake"}
15
  def load_model():
16
  model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
17
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, fast=True)
18
- return Trainer(model=model), tokenizer
19
 
20
  def sigmoid(x):
21
  return 1 / (1 + np.exp(-x))
@@ -50,9 +50,9 @@ if submit:
50
  for i in range(text_len // 512):
51
  sequences.append(" ".join(text[i * 512: (i + 1) * 512]))
52
  sequences.append(" ".join(text[text_len - (text_len % 512) : text_len]))
53
- sequences = [tokenizer(i, max_length=512, truncation=True, padding="max_length") for i in sequences]
54
 
55
- predictions = model.predict(sequences)[0]
56
  result = [
57
  np.sum([sigmoid(i[0]) for i in predictions]) / len(predictions),
58
  np.sum([sigmoid(i[1]) for i in predictions]) / len(predictions)
 
3
  import re
4
  import time
5
 
6
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
7
  from Scraper import Scrap
8
 
9
  st.set_page_config(layout="wide")
 
15
  def load_model():
16
  model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
17
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, fast=True)
18
+ return model, tokenizer
19
 
20
  def sigmoid(x):
21
  return 1 / (1 + np.exp(-x))
 
50
  for i in range(text_len // 512):
51
  sequences.append(" ".join(text[i * 512: (i + 1) * 512]))
52
  sequences.append(" ".join(text[text_len - (text_len % 512) : text_len]))
53
+ sequences = tokenizer(sequences, max_length=512, truncation=True, padding="max_length", return_tensors='pt')
54
 
55
+ predictions = model(**sequences)[0].detach().numpy()
56
  result = [
57
  np.sum([sigmoid(i[0]) for i in predictions]) / len(predictions),
58
  np.sum([sigmoid(i[1]) for i in predictions]) / len(predictions)