Rialbox's picture
Update app.py
ce6a793 verified
raw
history blame
7.88 kB
import gradio as gr
import os
import tempfile
from pathlib import Path
import secrets
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch
# Set up models and processors
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype="auto",
device_map="auto",
)
ocr_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
math_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-Math-7B-Instruct",
torch_dtype="auto",
device_map="auto",
)
math_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Math-7B-Instruct")
math_messages = []
def process_image(image, should_convert=False):
"""
Processes the uploaded image and extracts math-related content using Qwen2-VL.
"""
global math_messages
math_messages = [] # Reset when uploading a new image
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
os.makedirs(uploaded_file_dir, exist_ok=True)
name = f"tmp{secrets.token_hex(20)}.jpg"
filename = os.path.join(uploaded_file_dir, name)
if should_convert:
# Convert image to RGB if required
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
new_img.paste(image, (0, 0), mask=image)
image = new_img
image.save(filename)
# Prepare OCR input
messages = [
{
'role': 'system',
'content': [{'text': 'You are a helpful assistant.'}]
},
{
'role': 'user',
'content': [
{'image': f'file://{filename}'},
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
]
}
]
# Generate OCR output
text_prompt = ocr_processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = ocr_processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
inputs = inputs.to("cpu") # Use CPU if GPU is unavailable
output_ids = ocr_model.generate(**inputs, max_new_tokens=1024)
output_text = ocr_processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
os.remove(filename)
return output_text
def get_math_response(image_description, user_question):
"""
Sends the OCR output and user question to Qwen2-Math and retrieves the solution.
"""
global math_messages
# Initialize the math assistant role
if not math_messages:
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
math_messages = math_messages[:1] # Retain only the system prompt
# Format the input question
if image_description is not None:
content = f'Image description: {image_description}\n\n'
else:
content = ''
query = f"{content}User question: {user_question}"
math_messages.append({'role': 'user', 'content': query})
# Prepare math model input
inputs = math_tokenizer(
text=query,
padding=True,
return_tensors="pt"
).to("cuda") # Use CPU if GPU is unavailable
# Generate the math reasoning response
output_ids = math_model.generate(
**inputs,
max_new_tokens=1024,
pad_token_id=math_tokenizer.pad_token_id
)
response = math_tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
math_messages.append({'role': 'assistant', 'content': response}) # Append assistant response
return response
def math_chat_bot(image, sketchpad, question, state):
"""
Orchestrates the OCR (image processing) and math reasoning based on user input.
"""
current_tab_index = state["tab_index"]
image_description = None
# Upload tab
if current_tab_index == 0:
if image is not None:
image_description = process_image(image)
# Sketch tab
elif current_tab_index == 1:
if sketchpad and sketchpad["composite"]:
image_description = process_image(sketchpad["composite"], True)
response = get_math_response(image_description, question)
yield response
css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""
def tabs_select(e: gr.SelectData, _state):
_state["tab_index"] = e.index
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.HTML("""\
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/><p>"""
"""<center><font size=8>πŸ“– Qwen2-Math Demo</center>"""
"""\
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
)
state = gr.State({"tab_index": 0})
with gr.Row():
with gr.Column():
with gr.Tabs() as input_tabs:
with gr.Tab("Upload"):
input_image = gr.Image(type="pil", label="Upload")
with gr.Tab("Sketch"):
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
input_tabs.select(fn=tabs_select, inputs=[state])
input_text = gr.Textbox(label="Input your question")
with gr.Row():
with gr.Column():
clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
with gr.Column():
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_md = gr.Markdown(label="answer",
latex_delimiters=[{
"left": "\\(",
"right": "\\)",
"display": True
}, {
"left": "\\begin\{equation\}",
"right": "\\end\{equation\}",
"display": True
}, {
"left": "\\begin\{align\}",
"right": "\\end\{align\}",
"display": True
}, {
"left": "\\begin\{alignat\}",
"right": "\\end\{alignat\}",
"display": True
}, {
"left": "\\begin\{gather\}",
"right": "\\end\{gather\}",
"display": True
}, {
"left": "\\begin\{CD\}",
"right": "\\end\{CD\}",
"display": True
}, {
"left": "\\[",
"right": "\\]",
"display": True
}],
elem_id="qwen-md")
submit_btn.click(
fn=math_chat_bot,
inputs=[input_image, input_sketchpad, input_text, state],
outputs=output_md)
demo.launch(share=True)