Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
import requests | |
from openai import OpenAI, AsyncOpenAI | |
clients = { | |
'32B (work in progress)': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_32B')), os.getenv('MODEL_NAME_32B')], | |
'32B QWQ (experimental, without any additional tuning after LEP!)': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_QWQ')), os.getenv('MODEL_NAME_QWQ')], | |
'7B (work in progress)': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_7B')), 'RefalMachine/ruadapt_qwen2.5_7B_ext_u48_instruct'], | |
'3B': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_3B')), 'RefalMachine/ruadapt_qwen2.5_3B_ext_u48_instruct_v4'] | |
} | |
#client = InferenceClient(os.getenv('MODEL_NAME_OR_PATH')) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model_name, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
repetition_penalty | |
): | |
messages = [] | |
if len(system_message.strip()) > 0: | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
res = clients[model_name][0].chat.completions.create( | |
model=clients[model_name][1], | |
messages=messages, | |
temperature=temperature, | |
top_p=top_p, | |
max_tokens=max_tokens, | |
stream=True, | |
extra_body={ | |
"repetition_penalty": repetition_penalty, | |
"add_generation_prompt": True, | |
} | |
) | |
for message in res: | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
options = ["32B (work in progress)", "32B QWQ (experimental, without any additional tuning after LEP!)", "7B (work in progress)", "3B"] | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Radio(choices=options, label="Model:", value=options[1]), | |
gr.Textbox(value="You are a helpful and harmless assistant. You should think step-by-step. First, reason (the user does not see your reasoning), then give your final answer.", label="System message"), | |
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.0, maximum=2.0, value=0.3, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.Slider(minimum=0.9, maximum=1.5, value=1.05, step=0.05, label="repetition_penalty"), | |
], | |
concurrency_limit=10 | |
) | |
if __name__ == "__main__": | |
#print(requests.get(os.getenv('MODEL_NAME_OR_PATH')[:-3] + '/docs')) | |
demo.launch(share=True) | |