RuadaptQwen2.5 / app.py
RefalMachine's picture
Update app.py
e3d87c2 verified
import gradio as gr
from huggingface_hub import InferenceClient
import os
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""
import requests
from openai import OpenAI, AsyncOpenAI
clients = {
'32B (work in progress)': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_32B')), os.getenv('MODEL_NAME_32B')],
'32B QWQ (experimental, without any additional tuning after LEP!)': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_QWQ')), os.getenv('MODEL_NAME_QWQ')],
'7B (work in progress)': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_7B')), 'RefalMachine/ruadapt_qwen2.5_7B_ext_u48_instruct'],
'3B': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_3B')), 'RefalMachine/ruadapt_qwen2.5_3B_ext_u48_instruct_v4']
}
#client = InferenceClient(os.getenv('MODEL_NAME_OR_PATH'))
def respond(
message,
history: list[tuple[str, str]],
model_name,
system_message,
max_tokens,
temperature,
top_p,
repetition_penalty
):
messages = []
if len(system_message.strip()) > 0:
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
res = clients[model_name][0].chat.completions.create(
model=clients[model_name][1],
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
stream=True,
extra_body={
"repetition_penalty": repetition_penalty,
"add_generation_prompt": True,
}
)
for message in res:
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
options = ["32B (work in progress)", "32B QWQ (experimental, without any additional tuning after LEP!)", "7B (work in progress)", "3B"]
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Radio(choices=options, label="Model:", value=options[1]),
gr.Textbox(value="You are a helpful and harmless assistant. You should think step-by-step. First, reason (the user does not see your reasoning), then give your final answer.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.0, maximum=2.0, value=0.3, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(minimum=0.9, maximum=1.5, value=1.05, step=0.05, label="repetition_penalty"),
],
concurrency_limit=10
)
if __name__ == "__main__":
#print(requests.get(os.getenv('MODEL_NAME_OR_PATH')[:-3] + '/docs'))
demo.launch(share=True)