Spaces:
Running
Running
File size: 18,989 Bytes
55204fd a0656ca 55204fd 49c8e9f 55204fd b3912be ecadb03 b3912be 55204fd a0656ca 55204fd a0656ca 55204fd a0656ca 55204fd a0656ca 55204fd ecadb03 55204fd ecadb03 55204fd a0656ca 55204fd a0656ca 55204fd a0656ca 55204fd b3912be 55204fd ecadb03 55204fd 49c8e9f 55204fd a0656ca 55204fd a0656ca 55204fd 49c8e9f a0656ca 55204fd 49c8e9f 55204fd a0656ca 55204fd 49c8e9f 55204fd 49c8e9f 55204fd 49c8e9f 55204fd 49c8e9f 55204fd 49c8e9f 55204fd 49c8e9f 55204fd a0656ca 55204fd a0656ca 55204fd a0656ca 55204fd b3912be 55204fd a0656ca 55204fd a0656ca ecadb03 b3912be a0656ca 55204fd a0656ca 55204fd a0656ca b3912be 55204fd b3912be ecadb03 b3912be 55204fd b3912be ecadb03 b3912be ecadb03 b3912be 55204fd a0656ca 55204fd b3912be ecadb03 b3912be 55204fd 49c8e9f 55204fd b3912be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import copy
import datetime
import json
import os
import re
import string
import time
from typing import Optional, Any
import gradio as gr
import openai
import google.generativeai as genai
# Set up LLM APIs
llm_api_options = ['gemini-pro', 'gemini-1.5-flash', 'gpt-3.5-turbo-1106', 'gpt-4o-2024-05-13', 'gpt-4o-mini-2024-07-18']
def query_gpt_model(
prompt: str,
llm: str = 'gpt-3.5-turbo-1106',
client: Optional[Any] = None,
temperature: float = 0.0,
max_decode_steps: int = 512,
seconds_to_reset_tokens: float = 30.0,
) -> str:
while True:
try:
raw_response = client.chat.completions.with_raw_response.create(
model=llm,
max_tokens=max_decode_steps,
temperature=temperature,
messages=[
{'role': 'user', 'content': prompt},
]
)
completion = raw_response.parse()
return completion.choices[0].message.content
except openai.RateLimitError as e:
print(f'{datetime.datetime.now()}: query_gpt_model: RateLimitError {e.message}: {e}')
time.sleep(seconds_to_reset_tokens)
except openai.APIError as e:
print(f'{datetime.datetime.now()}: query_gpt_model: APIError {e.message}: {e}')
print(f'{datetime.datetime.now()}: query_gpt_model: Retrying after 5 seconds...')
time.sleep(5)
safety_settings=[
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_ONLY_HIGH"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_ONLY_HIGH"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_ONLY_HIGH"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"}
]
def query_gemini_model(
prompt: str,
llm: str = 'gemini-pro',
client: Optional[Any] = None,
retries: int = 10,
) -> str:
del client
model = genai.GenerativeModel(llm)
generation_config={'temperature': 0.0}
while True and retries > 0:
try:
response = model.generate_content(
prompt,
safety_settings=safety_settings,
generation_config=generation_config
)
text_response = response.text.replace("**", "")
return text_response
except Exception as e:
print(f'{datetime.datetime.now()}: query_gemini_model: Error: {e}')
print(f'{datetime.datetime.now()}: query_gemini_model: Retrying after 5 seconds...')
retries -= 1
time.sleep(5)
def query_model(
prompt: str,
model_name: str = 'gemini-pro',
client: Optional[Any] = None,
) -> str:
model_type = model_name.split('-')[0]
if model_type == "gpt":
return query_gpt_model(prompt, llm=model_name, client=client)
elif model_type == "gemini":
return query_gemini_model(prompt, llm=model_name, client=client)
else:
raise ValueError('Unexpected model_name: ', model_name)
# Load QuALITY dataset
_ONE2ONE_FIELDS = (
'article',
'article_id',
'set_unique_id',
'writer_id',
'source',
'title',
'topic',
'url',
'writer_id',
'author',
)
quality_dev = []
with open('QuALITY.v1.0.1.htmlstripped.dev', 'r') as f:
for line in f.readlines():
j = json.loads(line)
fields = {k: j[k] for k in _ONE2ONE_FIELDS}
fields.update({
'questions': [q['question'] for q in j['questions']],
'question_ids': [q['question_unique_id'] for q in j['questions']],
'difficults': [q['difficult'] for q in j['questions']],
'options': [q['options'] for q in j['questions']],
})
fields.update({
'gold_labels': [q['gold_label'] for q in j['questions']],
'writer_labels': [q['writer_label'] for q in j['questions']],
})
quality_dev.append(fields)
# likely to succeed
index_map = {'A': 1, 'B': 9, 'C': 13, 'D': 200}
# Helper functions
all_lowercase_letters = string.ascii_lowercase # "abcd...xyz"
bracketed_lowercase_letters_set = set(
[f"({l})" for l in all_lowercase_letters]
) # {"(a)", ...}
bracketed_uppercase_letters_set = set(
[f"({l.upper()})" for l in all_lowercase_letters]
) # {"(a)", ...}
choices = ['(A)', '(B)', '(C)', '(D)']
def get_index_from_symbol(answer):
"""Get the index from the letter symbols A, B, C, D, to extract answer texts.
Args:
answer (str): the string of answer like "(B)".
Returns:
index (int): how far the given choice is from "a", like 1 for answer "(B)".
"""
answer = str(answer).lower()
# extract the choice letter from within bracket
if answer in bracketed_lowercase_letters_set:
answer = re.findall(r".*?", answer)[0][1]
index = ord(answer) - ord("a")
return index
def count_words(text):
"""Simple word counting."""
return len(text.split())
def quality_gutenberg_parser(raw_article):
"""Parse Gutenberg articles in the QuALITY dataset."""
lines = []
previous_line = None
for i, line in enumerate(raw_article.split('\n')):
line = line.strip()
original_line = line
if line == '':
if previous_line == '':
line = '\n'
else:
previous_line = original_line
continue
previous_line = original_line
lines.append(line)
return ' '.join(lines)
# ReadAgent (1) Episode Pagination
prompt_pagination_template = """
You are given a passage that is taken from a larger text (article, book, ...) and some numbered labels between the paragraphs in the passage.
Numbered label are in angeled brackets. For example, if the label number is 19, it shows as <19> in text.
Please choose one label that it is natural to break reading.
Such point can be scene transition, end of a dialogue, end of an argument, narrative transition, etc.
Please answer the break point label and explain.
For example, if <57> is a good point to break, answer with \"Break point: <57>\n Because ...\"
Passage:
{0}
{1}
{2}
"""
def parse_pause_point(text):
text = text.strip("Break point: ")
if text[0] != '<':
return None
for i, c in enumerate(text):
if c == '>':
if text[1:i].isnumeric():
return int(text[1:i])
else:
return None
return None
def quality_pagination(example,
model_name='gemini-pro',
client=None,
word_limit=600,
start_threshold=280,
max_retires=10,
verbose=True,
allow_fallback_to_last=True):
article = example['article']
title = example['title']
text_output = f"[Pagination][Article {title}]" + '\n\n'
paragraphs = quality_gutenberg_parser(article).split('\n')
i = 0
pages = []
while i < len(paragraphs):
preceding = "" if i == 0 else "...\n" + '\n'.join(pages[-1])
passage = [paragraphs[i]]
wcount = count_words(paragraphs[i])
j = i + 1
while wcount < word_limit and j < len(paragraphs):
wcount += count_words(paragraphs[j])
if wcount >= start_threshold:
passage.append(f"<{j}>")
passage.append(paragraphs[j])
j += 1
passage.append(f"<{j}>")
end_tag = "" if j == len(paragraphs) else paragraphs[j] + "\n..."
pause_point = None
if wcount < 350:
pause_point = len(paragraphs)
else:
prompt = prompt_pagination_template.format(preceding, '\n'.join(passage), end_tag)
response = query_model(prompt=prompt, model_name=model_name, client=client).strip()
pause_point = parse_pause_point(response)
if pause_point and (pause_point <= i or pause_point > j):
# process += f"prompt:\n{prompt},\nresponse:\n{response}\n"
# process += f"i:{i} j:{j} pause_point:{pause_point}" + '\n'
pause_point = None
if pause_point is None:
if allow_fallback_to_last:
pause_point = j
else:
raise ValueError(f"prompt:\n{prompt},\nresponse:\n{response}\n")
page = paragraphs[i:pause_point]
pages.append(page)
text_output += f"Paragraph {i}-{pause_point-1}: {page}\n\n"
i = pause_point
text_output += f"\n\n[Pagination] Done with {len(pages)} pages"
return pages, text_output
# ReadAgent (2) Memory Gisting
prompt_shorten_template = """
Please shorten the following passage.
Just give me a shortened version. DO NOT explain your reason.
Passage:
{}
"""
def quality_gisting(example, pages, model_name, client=None, word_limit=600, start_threshold=280, verbose=True):
article = example['article']
title = example['title']
word_count = count_words(article)
text_output = f"[Gisting][Article {title}], {word_count} words\n\n"
shortened_pages = []
for i, page in enumerate(pages):
prompt = prompt_shorten_template.format('\n'.join(page))
response = query_model(prompt, model_name, client)
shortened_text = response.strip()
shortened_pages.append(shortened_text)
text_output += "[gist] page {}: {}\n\n".format(i, shortened_text)
shortened_article = '\n'.join(shortened_pages)
gist_word_count = count_words(shortened_article)
text_output += '\n\n' + f"Shortened article:\n{shortened_article}\n\n"
output = copy.deepcopy(example)
output.update({'title': title, 'word_count': word_count, 'gist_word_count': gist_word_count, 'shortened_pages': shortened_pages, 'pages': pages})
text_output += f"\n\ncompression rate {round(100.0 - gist_word_count/word_count*100, 2)}% ({gist_word_count}/{word_count})"
return output, text_output
# ReadAgent (3) Look-Up
prompt_lookup_template = """
The following text is what you remembered from reading an article and a multiple choice question related to it.
You may read 1 to 6 page(s) of the article again to refresh your memory to prepare yourselve for the question.
Please respond with which page(s) you would like to read.
For example, if your only need to read Page 8, respond with \"I want to look up Page [8] to ...\";
if your would like to read Page 7 and 12, respond with \"I want to look up Page [7, 12] to ...\";
if your would like to read Page 2, 3, 7, 15 and 18, respond with \"I want to look up Page [2, 3, 7, 15, 18] to ...\".
if your would like to read Page 3, 4, 5, 12, 13 and 16, respond with \"I want to look up Page [3, 3, 4, 12, 13, 16] to ...\".
DO NOT select more pages if you don't need to.
DO NOT answer the question yet.
Text:
{}
Question:
{}
{}
Take a deep breath and tell me: Which page(s) would you like to read again?
"""
prompt_answer_template = """
Read the following article and answer a multiple choice question.
For example, if (C) is correct, answer with \"Answer: (C) ...\"
Article:
{}
Question:
{}
{}
"""
def quality_parallel_lookup(example, model_name, client, verbose=True):
preprocessed_pages = example['pages']
article = example['article']
title = example['title']
word_count = example['word_count']
gist_word_count = example['gist_word_count']
pages = example['pages']
shortened_pages = example['shortened_pages']
questions = example['questions']
options = example['options']
gold_labels = example['gold_labels'] # numerical [1, 2, 3, 4]
text_outputs = [f"[Look-Up][Article {title}] {word_count} words"]
model_choices = []
lookup_page_ids = []
shortened_pages_pidx = []
for i, shortened_text in enumerate(shortened_pages):
shortened_pages_pidx.append("\n".format(i) + shortened_text)
shortened_article = '\n'.join(shortened_pages_pidx)
expanded_gist_word_counts = []
for i, label in enumerate(gold_labels):
# only test the first question for demo
if i != 1:
continue
q = questions[i]
text_output = f"question {i}: {q}" + '\n\n'
options_i = [f"{ol} {o}" for ol, o in zip(choices, options[i])]
text_output += "options: " + "\n".join(options_i)
text_output += '\n\n'
prompt_lookup = prompt_lookup_template.format(shortened_article, q, '\n'.join(options_i))
page_ids = []
response = query_model(prompt=prompt_lookup, model_name=model_name, client=client).strip()
try: start = response.index('[')
except ValueError: start = len(response)
try: end = response.index(']')
except ValueError: end = 0
if start < end:
page_ids_str = response[start+1:end].split(',')
page_ids = []
for p in page_ids_str:
if p.strip().isnumeric():
page_id = int(p)
if page_id < 0 or page_id >= len(pages):
text_output += f"Skip invalid page number: {page_id}\n\n"
else:
page_ids.append(page_id)
text_output += "Model chose to look up page {}\n\n".format(page_ids)
# Memory expansion after look-up, replacing the target shortened page with the original page
expanded_shortened_pages = shortened_pages[:]
if len(page_ids) > 0:
for page_id in page_ids:
expanded_shortened_pages[page_id] = '\n'.join(pages[page_id])
expanded_shortened_article = '\n'.join(expanded_shortened_pages)
expanded_gist_word_count = count_words(expanded_shortened_article)
text_output += "Expanded shortened article:\n" + expanded_shortened_article + '\n\n'
prompt_answer = prompt_answer_template.format(expanded_shortened_article, q, '\n'.join(options_i))
model_choice = None
response = query_model(prompt=prompt_answer, model_name=model_name, client=client)
response = response.strip()
for j, choice in enumerate(choices):
if response.startswith(f"Answer: {choice}") or response.startswith(f"Answer: {choice[1]}"):
model_choice = j+1
break
is_correct = 1 if model_choice == label else 0
text_output += f"reference answer: {choices[label]}, model prediction: {choices[model_choice]}, is_correct: {is_correct}" + '\n\n'
text_output += f"compression rate {round(100.0 - gist_word_count/word_count*100, 2)}% ({gist_word_count}/{word_count})" + '\n\n'
text_output += f"compression rate after look-up {round(100.0 - expanded_gist_word_count/word_count*100, 2)}% ({expanded_gist_word_count}/{word_count})" + '\n\n'
text_output += '\n\n'
text_outputs.append(text_output)
return text_outputs
# ReadAgent
def query_model_with_quality(
index: int,
model_name: str = 'gemini-pro',
api_key: Optional[str] = None,
):
# setup api key first
client = None
model_type = model_name.split('-')[0]
if model_type == "gpt":
# api_key = os.environ.get('OPEN_AI_KEY')
client = openai.OpenAI(api_key=api_key)
elif model_type == "gemini":
# api_key = os.environ.get('GEMINI_API_KEY')
genai.configure(api_key=api_key)
example = quality_dev[index_map[index]]
article = f"[Title: {example['title']}]\n\n{example['article']}"
pages, pagination = quality_pagination(example, model_name, client)
print('Finish Pagination.')
example_with_gists, gisting = quality_gisting(example, pages, model_name, client)
print('Finish Gisting.')
answers = quality_parallel_lookup(example_with_gists, model_name, client)
# return prompt_pagination_template, pagination, prompt_shorten_template, gisting, prompt_lookup_template, '\n\n'.join(answers)
return article, pagination, gisting, '\n\n'.join(answers)
with gr.Blocks() as demo:
gr.Markdown(
"""
# A Human-Inspired Reading Agent with Gist Memory of Very Long Contexts
[[website]](https://read-agent.github.io/)
[[view on huggingface]](https://huggingface.co./spaces/ReadAgent/read-agent)
[[arXiv]](https://arxiv.org/abs/2402.09727)
[[OpenReview]](https://openreview.net/forum?id=OTmcsyEO5G)
![teaser](/file=./asset/teaser.png)
The demo below showcases a version of the ReadAgent algorithm, which is nspired by how humans interactively read long documents.
We implement ReadAgent as a simple prompting system that uses the advanced language capabilities of LLMs to (1) decide what content to store together in a memory episode (**Episode Pagination**), (2) compress those memory episodes into short episodic memories called gist memories (**Memory Gisting**), and (3) take actions to look up passages in the original text if ReadAgent needs to remind itself of relevant details to complete a task (**Parallel Lookup and QA**)
This demo can handle long-document reading comprehension tasks ([QuALITY](https://arxiv.org/abs/2112.08608); max 6,000 words) efficiently.
To get started, you can choose an example article from QuALITY dataset.
This demo uses Gemini API or OpenAI API so it requires the corresponding API key.
""")
with gr.Row():
with gr.Column():
llm_options = gr.Radio(llm_api_options, label="Backend LLM API", value='gemini-pro')
llm_api_key = gr.Textbox(
label="Paste your OpenAI API key (sk-...) or Gemini API key",
lines=1,
type="password",
)
# index = gr.Dropdown(list(range(len(quality_dev))), value=13, label="QuALITY Index")
index = gr.Radio(['A', 'B', 'C', 'D'], label="Example Article", value='A')
with gr.Row():
example_article_a = gr.Textbox(
label="Example Article (A)",
lines=10,
value=f"[Title: {quality_dev[index_map['A']]['title']}]\n\n{quality_dev[index_map['A']]['article']}")
example_article_a = gr.Textbox(
label="Example Article (B)",
lines=10,
value=f"[Title: {quality_dev[index_map['B']]['title']}]\n\n{quality_dev[index_map['B']]['article']}")
example_article_a = gr.Textbox(
label="Example Article (C)",
lines=10,
value=f"[Title: {quality_dev[index_map['C']]['title']}]\n\n{quality_dev[index_map['C']]['article']}")
example_article_a = gr.Textbox(
label="Example Article (D)",
lines=10,
value=f"[Title: {quality_dev[index_map['D']]['title']}]\n\n{quality_dev[index_map['D']]['article']}")
button = gr.Button("Execute")
choosen_article = gr.Textbox(label="Choosen Original Article", lines=20)
# prompt_pagination = gr.Textbox(label="Episode Pagination Prompt Template", lines=5)
pagination_results = gr.Textbox(label="(1) Episode Pagination", lines=20)
# prompt_gisting = gr.Textbox(label="Memory Gisting Prompt Template", lines=5)
gisting_results = gr.Textbox(label="(2) Memory Gisting", lines=20)
# prompt_lookup = gr.Textbox(label="Parallel Lookup Prompt Template", lines=5)
lookup_qa_results = gr.Textbox(label="(3) Parallel Lookup and QA", lines=20)
button.click(
fn=query_model_with_quality,
inputs=[
index,
llm_options,
llm_api_key,
],
outputs=[
# prompt_pagination, pagination_results,
# prompt_gisting, gisting_results,
# prompt_lookup, lookup_qa_results,
choosen_article,
pagination_results,
gisting_results,
lookup_qa_results,
]
)
if __name__ == '__main__':
demo.launch(allowed_paths=['./asset/teaser.png'])
|