File size: 18,989 Bytes
55204fd
 
 
 
 
 
 
a0656ca
55204fd
49c8e9f
55204fd
 
 
 
b3912be
ecadb03
b3912be
55204fd
 
 
a0656ca
55204fd
 
 
 
 
 
 
a0656ca
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0656ca
55204fd
 
a0656ca
55204fd
ecadb03
55204fd
 
ecadb03
 
 
 
 
55204fd
 
 
 
 
 
 
 
 
 
 
 
a0656ca
55204fd
 
 
a0656ca
55204fd
a0656ca
55204fd
 
 
 
b3912be
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecadb03
 
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c8e9f
 
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0656ca
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0656ca
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c8e9f
 
a0656ca
55204fd
 
 
 
49c8e9f
55204fd
 
 
a0656ca
55204fd
 
 
 
 
 
 
 
 
 
49c8e9f
 
55204fd
 
 
 
 
 
 
 
 
 
 
49c8e9f
55204fd
 
49c8e9f
55204fd
 
 
49c8e9f
55204fd
49c8e9f
55204fd
 
 
 
 
 
 
 
 
 
 
 
49c8e9f
55204fd
a0656ca
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0656ca
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0656ca
55204fd
 
 
 
 
 
 
 
 
 
 
 
 
 
b3912be
55204fd
 
a0656ca
 
55204fd
a0656ca
 
 
 
 
 
 
 
 
 
ecadb03
b3912be
a0656ca
55204fd
a0656ca
55204fd
a0656ca
b3912be
 
55204fd
 
 
 
 
 
b3912be
 
 
 
 
 
 
 
 
 
 
 
ecadb03
b3912be
55204fd
b3912be
 
 
 
 
 
 
 
ecadb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3912be
ecadb03
b3912be
 
 
 
 
 
55204fd
 
 
 
 
a0656ca
 
55204fd
 
b3912be
 
 
ecadb03
b3912be
 
 
55204fd
 
49c8e9f
 
55204fd
b3912be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import copy
import datetime
import json
import os
import re
import string
import time
from typing import Optional, Any

import gradio as gr
import openai
import google.generativeai as genai


# Set up LLM APIs
llm_api_options = ['gemini-pro', 'gemini-1.5-flash', 'gpt-3.5-turbo-1106', 'gpt-4o-2024-05-13', 'gpt-4o-mini-2024-07-18']

def query_gpt_model(
    prompt: str,
    llm: str = 'gpt-3.5-turbo-1106',
    client: Optional[Any] = None,
    temperature: float = 0.0,
    max_decode_steps: int = 512,
    seconds_to_reset_tokens: float = 30.0,
) -> str:

  while True:
    try:
      raw_response = client.chat.completions.with_raw_response.create(
        model=llm,
        max_tokens=max_decode_steps,
        temperature=temperature,
        messages=[
          {'role': 'user', 'content': prompt},
        ]
      )
      completion = raw_response.parse()
      return completion.choices[0].message.content
    except openai.RateLimitError as e:
      print(f'{datetime.datetime.now()}: query_gpt_model: RateLimitError {e.message}: {e}')
      time.sleep(seconds_to_reset_tokens)
    except openai.APIError as e:
      print(f'{datetime.datetime.now()}: query_gpt_model: APIError {e.message}: {e}')
      print(f'{datetime.datetime.now()}: query_gpt_model: Retrying after 5 seconds...')
      time.sleep(5)

safety_settings=[
    {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_ONLY_HIGH"},
    {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_ONLY_HIGH"},
    {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_ONLY_HIGH"},
    {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"}
]

def query_gemini_model(
    prompt: str,
    llm: str = 'gemini-pro',
    client: Optional[Any] = None,
    retries: int = 10,
) -> str:
  del client
  model = genai.GenerativeModel(llm)
  generation_config={'temperature': 0.0}
  while True and retries > 0:
    try:
      response = model.generate_content(
        prompt,
        safety_settings=safety_settings,
        generation_config=generation_config
      )
      text_response = response.text.replace("**", "")
      return text_response
    except Exception as e:
      print(f'{datetime.datetime.now()}: query_gemini_model: Error: {e}')
      print(f'{datetime.datetime.now()}: query_gemini_model: Retrying after 5 seconds...')
      retries -= 1
      time.sleep(5)


def query_model(
    prompt: str,
    model_name: str = 'gemini-pro',
    client: Optional[Any] = None,
) -> str:
  model_type = model_name.split('-')[0]
  if model_type == "gpt":
    return query_gpt_model(prompt, llm=model_name, client=client)
  elif model_type == "gemini":
    return query_gemini_model(prompt, llm=model_name, client=client)
  else:
    raise ValueError('Unexpected model_name: ', model_name)


# Load QuALITY dataset
_ONE2ONE_FIELDS = (
    'article',
    'article_id',
    'set_unique_id',
    'writer_id',
    'source',
    'title',
    'topic',
    'url',
    'writer_id',
    'author',
)

quality_dev = []
with open('QuALITY.v1.0.1.htmlstripped.dev', 'r') as f:
  for line in f.readlines():
    j = json.loads(line)
    fields = {k: j[k] for k in _ONE2ONE_FIELDS}
    fields.update({
        'questions': [q['question'] for q in j['questions']],
        'question_ids': [q['question_unique_id'] for q in j['questions']],
        'difficults': [q['difficult'] for q in j['questions']],
        'options': [q['options'] for q in j['questions']],
    })

    fields.update({
        'gold_labels': [q['gold_label'] for q in j['questions']],
        'writer_labels': [q['writer_label'] for q in j['questions']],
      })

    quality_dev.append(fields)

# likely to succeed
index_map = {'A': 1, 'B': 9, 'C': 13, 'D': 200}


# Helper functions
all_lowercase_letters = string.ascii_lowercase  # "abcd...xyz"
bracketed_lowercase_letters_set = set(
    [f"({l})" for l in all_lowercase_letters]
)  # {"(a)", ...}
bracketed_uppercase_letters_set = set(
    [f"({l.upper()})" for l in all_lowercase_letters]
)  # {"(a)", ...}

choices = ['(A)', '(B)', '(C)', '(D)']

def get_index_from_symbol(answer):
  """Get the index from the letter symbols A, B, C, D, to extract answer texts.

  Args:
    answer (str): the string of answer like "(B)".

  Returns:
    index (int): how far the given choice is from "a", like 1 for answer "(B)".
  """
  answer = str(answer).lower()
  # extract the choice letter from within bracket
  if answer in bracketed_lowercase_letters_set:
    answer = re.findall(r".*?", answer)[0][1]
  index = ord(answer) - ord("a")
  return index

def count_words(text):
  """Simple word counting."""
  return len(text.split())

def quality_gutenberg_parser(raw_article):
  """Parse Gutenberg articles in the QuALITY dataset."""
  lines = []
  previous_line = None
  for i, line in enumerate(raw_article.split('\n')):
    line = line.strip()
    original_line = line
    if line == '':
      if previous_line == '':
        line = '\n'
      else:
        previous_line = original_line
        continue
    previous_line = original_line
    lines.append(line)
  return ' '.join(lines)


# ReadAgent (1) Episode Pagination
prompt_pagination_template = """
You are given a passage that is taken from a larger text (article, book, ...) and some numbered labels between the paragraphs in the passage.
Numbered label are in angeled brackets. For example, if the label number is 19, it shows as <19> in text.
Please choose one label that it is natural to break reading.
Such point can be scene transition, end of a dialogue, end of an argument, narrative transition, etc.
Please answer the break point label and explain.
For example, if <57> is a good point to break, answer with \"Break point: <57>\n Because ...\"

Passage:

{0}
{1}
{2}

"""

def parse_pause_point(text):
  text = text.strip("Break point: ")
  if text[0] != '<':
    return None
  for i, c in enumerate(text):
    if c == '>':
      if text[1:i].isnumeric():
        return int(text[1:i])
      else:
        return None
  return None


def quality_pagination(example,
                       model_name='gemini-pro',
                       client=None,
                       word_limit=600,
                       start_threshold=280,
                       max_retires=10,
                       verbose=True,
                       allow_fallback_to_last=True):
  article = example['article']
  title = example['title']
  text_output = f"[Pagination][Article {title}]" + '\n\n'
  paragraphs = quality_gutenberg_parser(article).split('\n')

  i = 0
  pages = []
  while i < len(paragraphs):
    preceding = "" if i == 0 else "...\n" + '\n'.join(pages[-1])
    passage = [paragraphs[i]]
    wcount = count_words(paragraphs[i])
    j = i + 1
    while wcount < word_limit and j < len(paragraphs):
      wcount += count_words(paragraphs[j])
      if wcount >= start_threshold:
        passage.append(f"<{j}>")
      passage.append(paragraphs[j])
      j += 1
    passage.append(f"<{j}>")
    end_tag = "" if j == len(paragraphs) else paragraphs[j] + "\n..."

    pause_point = None
    if wcount < 350:
      pause_point = len(paragraphs)
    else:
      prompt = prompt_pagination_template.format(preceding, '\n'.join(passage), end_tag)
      response = query_model(prompt=prompt, model_name=model_name, client=client).strip()
      pause_point = parse_pause_point(response)
      if pause_point and (pause_point <= i or pause_point > j):
        # process += f"prompt:\n{prompt},\nresponse:\n{response}\n"
        # process += f"i:{i} j:{j} pause_point:{pause_point}" + '\n'
        pause_point = None
      if pause_point is None:
        if allow_fallback_to_last:
          pause_point = j
        else:
          raise ValueError(f"prompt:\n{prompt},\nresponse:\n{response}\n")

    page = paragraphs[i:pause_point]
    pages.append(page)
    text_output += f"Paragraph {i}-{pause_point-1}: {page}\n\n" 
    i = pause_point
  text_output += f"\n\n[Pagination] Done with {len(pages)} pages"
  return pages, text_output


# ReadAgent (2) Memory Gisting
prompt_shorten_template = """
Please shorten the following passage.
Just give me a shortened version. DO NOT explain your reason.

Passage:
{}

"""

def quality_gisting(example, pages, model_name, client=None, word_limit=600, start_threshold=280, verbose=True):
  article = example['article']
  title = example['title']
  word_count = count_words(article)
  text_output = f"[Gisting][Article {title}], {word_count} words\n\n"

  shortened_pages = []
  for i, page in enumerate(pages):
    prompt = prompt_shorten_template.format('\n'.join(page))
    response = query_model(prompt, model_name, client)
    shortened_text = response.strip()
    shortened_pages.append(shortened_text)
    text_output += "[gist] page {}: {}\n\n".format(i, shortened_text)
  shortened_article = '\n'.join(shortened_pages)
  gist_word_count = count_words(shortened_article)
  text_output += '\n\n' + f"Shortened article:\n{shortened_article}\n\n" 
  output = copy.deepcopy(example)
  output.update({'title': title, 'word_count': word_count, 'gist_word_count': gist_word_count, 'shortened_pages': shortened_pages, 'pages': pages})
  text_output += f"\n\ncompression rate {round(100.0 - gist_word_count/word_count*100, 2)}% ({gist_word_count}/{word_count})"
  return output, text_output


# ReadAgent (3) Look-Up
prompt_lookup_template = """
The following text is what you remembered from reading an article and a multiple choice question related to it.
You may read 1 to 6 page(s) of the article again to refresh your memory to prepare yourselve for the question.
Please respond with which page(s) you would like to read.
For example, if your only need to read Page 8, respond with \"I want to look up Page [8] to ...\";
if your would like to read Page 7 and 12, respond with \"I want to look up Page [7, 12] to ...\";
if your would like to read Page 2, 3, 7, 15 and 18, respond with \"I want to look up Page [2, 3, 7, 15, 18] to ...\".
if your would like to read Page 3, 4, 5, 12, 13 and 16, respond with \"I want to look up Page [3, 3, 4, 12, 13, 16] to ...\".
DO NOT select more pages if you don't need to.
DO NOT answer the question yet.

Text:
{}

Question:
{}
{}

Take a deep breath and tell me: Which page(s) would you like to read again?
"""

prompt_answer_template = """
Read the following article and answer a multiple choice question.
For example, if (C) is correct, answer with \"Answer: (C) ...\"

Article:
{}

Question:
{}
{}

"""

def quality_parallel_lookup(example, model_name, client, verbose=True):
  preprocessed_pages = example['pages']
  article = example['article']
  title = example['title']
  word_count = example['word_count']
  gist_word_count = example['gist_word_count']
  pages = example['pages']
  shortened_pages = example['shortened_pages']
  questions = example['questions']
  options = example['options']
  gold_labels = example['gold_labels']  # numerical [1, 2, 3, 4]

  text_outputs = [f"[Look-Up][Article {title}] {word_count} words"]

  model_choices = []
  lookup_page_ids = []

  shortened_pages_pidx = []
  for i, shortened_text in enumerate(shortened_pages):
    shortened_pages_pidx.append("\n".format(i) + shortened_text)
  shortened_article = '\n'.join(shortened_pages_pidx)

  expanded_gist_word_counts = []

  for i, label in enumerate(gold_labels):
    # only test the first question for demo
    if i != 1:
      continue
    q = questions[i]
    text_output = f"question {i}: {q}" + '\n\n'
    options_i = [f"{ol} {o}" for ol, o in zip(choices, options[i])]
    text_output += "options: " + "\n".join(options_i)
    text_output += '\n\n'
    prompt_lookup = prompt_lookup_template.format(shortened_article, q, '\n'.join(options_i))

    page_ids = []

    response = query_model(prompt=prompt_lookup, model_name=model_name, client=client).strip()

    try: start = response.index('[')
    except ValueError: start = len(response)
    try: end = response.index(']')
    except ValueError: end = 0
    if start < end:
      page_ids_str = response[start+1:end].split(',')
      page_ids = []
      for p in page_ids_str:
        if p.strip().isnumeric():
          page_id = int(p)
          if page_id < 0 or page_id >= len(pages):
            text_output += f"Skip invalid page number: {page_id}\n\n"
          else:
            page_ids.append(page_id)

    text_output += "Model chose to look up page {}\n\n".format(page_ids)

    # Memory expansion after look-up, replacing the target shortened page with the original page
    expanded_shortened_pages = shortened_pages[:]
    if len(page_ids) > 0:
      for page_id in page_ids:
        expanded_shortened_pages[page_id] = '\n'.join(pages[page_id])

    expanded_shortened_article = '\n'.join(expanded_shortened_pages)
    expanded_gist_word_count = count_words(expanded_shortened_article)
    text_output += "Expanded shortened article:\n" + expanded_shortened_article + '\n\n'
    prompt_answer = prompt_answer_template.format(expanded_shortened_article, q, '\n'.join(options_i))

    model_choice = None
    response = query_model(prompt=prompt_answer, model_name=model_name, client=client)
    response = response.strip()
    for j, choice in enumerate(choices):
      if response.startswith(f"Answer: {choice}") or response.startswith(f"Answer: {choice[1]}"):
        model_choice = j+1
        break
    is_correct = 1 if model_choice == label else 0
    text_output += f"reference answer: {choices[label]}, model prediction: {choices[model_choice]}, is_correct: {is_correct}" + '\n\n'
    text_output += f"compression rate {round(100.0 - gist_word_count/word_count*100, 2)}% ({gist_word_count}/{word_count})" + '\n\n'
    text_output += f"compression rate after look-up {round(100.0 - expanded_gist_word_count/word_count*100, 2)}% ({expanded_gist_word_count}/{word_count})" + '\n\n'
    text_output += '\n\n'
    text_outputs.append(text_output)
    return text_outputs


# ReadAgent
def query_model_with_quality(
      index: int,
      model_name: str = 'gemini-pro',
      api_key: Optional[str] = None,
):
   # setup api key first
   client = None
   model_type = model_name.split('-')[0]
   if model_type == "gpt":
    # api_key = os.environ.get('OPEN_AI_KEY')
    client = openai.OpenAI(api_key=api_key)
   elif model_type == "gemini":
     # api_key = os.environ.get('GEMINI_API_KEY')
     genai.configure(api_key=api_key)

   example = quality_dev[index_map[index]]
   article = f"[Title: {example['title']}]\n\n{example['article']}"
   pages, pagination = quality_pagination(example, model_name, client)
   print('Finish Pagination.')
   example_with_gists, gisting = quality_gisting(example, pages, model_name, client)
   print('Finish Gisting.')
   answers = quality_parallel_lookup(example_with_gists, model_name, client)
   # return prompt_pagination_template, pagination, prompt_shorten_template, gisting, prompt_lookup_template, '\n\n'.join(answers)
   return article, pagination, gisting, '\n\n'.join(answers)


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # A Human-Inspired Reading Agent with Gist Memory of Very Long Contexts

    [[website]](https://read-agent.github.io/)
    [[view on huggingface]](https://huggingface.co./spaces/ReadAgent/read-agent)
    [[arXiv]](https://arxiv.org/abs/2402.09727)
    [[OpenReview]](https://openreview.net/forum?id=OTmcsyEO5G)

    ![teaser](/file=./asset/teaser.png)

    The demo below showcases a version of the ReadAgent algorithm, which is nspired by how humans interactively read long documents.    
    We implement ReadAgent as a simple prompting system that uses the advanced language capabilities of LLMs to (1) decide what content to store together in a memory episode (**Episode Pagination**), (2) compress those memory episodes into short episodic memories called gist memories (**Memory Gisting**), and (3) take actions to look up passages in the original text if ReadAgent needs to remind itself of relevant details to complete a task (**Parallel Lookup and QA**)
    This demo can handle long-document reading comprehension tasks ([QuALITY](https://arxiv.org/abs/2112.08608); max 6,000 words) efficiently.

    To get started, you can choose an example article from QuALITY dataset.
    This demo uses Gemini API or OpenAI API so it requires the corresponding API key.
    """)
    with gr.Row():
        with gr.Column():
            llm_options = gr.Radio(llm_api_options, label="Backend LLM API", value='gemini-pro')
            llm_api_key = gr.Textbox(
              label="Paste your OpenAI API key (sk-...) or Gemini API key",
              lines=1,
              type="password",
            )
            # index = gr.Dropdown(list(range(len(quality_dev))), value=13, label="QuALITY Index")
            index = gr.Radio(['A', 'B', 'C', 'D'], label="Example Article", value='A')
            with gr.Row():
                example_article_a = gr.Textbox(
                  label="Example Article (A)",
                  lines=10,
                  value=f"[Title: {quality_dev[index_map['A']]['title']}]\n\n{quality_dev[index_map['A']]['article']}")
                example_article_a = gr.Textbox(
                  label="Example Article (B)",
                  lines=10,
                  value=f"[Title: {quality_dev[index_map['B']]['title']}]\n\n{quality_dev[index_map['B']]['article']}")
                example_article_a = gr.Textbox(
                  label="Example Article (C)",
                  lines=10,
                  value=f"[Title: {quality_dev[index_map['C']]['title']}]\n\n{quality_dev[index_map['C']]['article']}")
                example_article_a = gr.Textbox(
                  label="Example Article (D)",
                  lines=10,
                  value=f"[Title: {quality_dev[index_map['D']]['title']}]\n\n{quality_dev[index_map['D']]['article']}")
            button = gr.Button("Execute")
            choosen_article = gr.Textbox(label="Choosen Original Article", lines=20)
            # prompt_pagination = gr.Textbox(label="Episode Pagination Prompt Template", lines=5)
            pagination_results = gr.Textbox(label="(1) Episode Pagination", lines=20)
            # prompt_gisting = gr.Textbox(label="Memory Gisting Prompt Template", lines=5)
            gisting_results = gr.Textbox(label="(2) Memory Gisting", lines=20)
            # prompt_lookup = gr.Textbox(label="Parallel Lookup Prompt Template", lines=5)
            lookup_qa_results = gr.Textbox(label="(3) Parallel Lookup and QA", lines=20)

    button.click(
        fn=query_model_with_quality,
        inputs=[
           index,
           llm_options,
           llm_api_key,
        ],
        outputs=[
          # prompt_pagination, pagination_results,
          # prompt_gisting, gisting_results,
          # prompt_lookup, lookup_qa_results,
          choosen_article,
          pagination_results,
          gisting_results,
          lookup_qa_results,
        ]
    )


if __name__ == '__main__':
    demo.launch(allowed_paths=['./asset/teaser.png'])