Spaces:
Runtime error
Runtime error
import requests | |
import io | |
from PIL import Image, UnidentifiedImageError | |
import gradio as gr | |
from transformers import MarianMTModel, MarianTokenizer | |
import os | |
model_name = "Helsinki-NLP/opus-mt-mul-en" | |
model = MarianMTModel.from_pretrained(model_name) | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
def translate_text(input_text, language): | |
language_map = { | |
"Tamil": "ta", | |
"French": "fr", | |
"Hindi": "hi", | |
"German": "de" | |
} | |
lang_prefix = f">>{language_map[language]}<< " | |
text_with_lang = lang_prefix + input_text | |
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True) | |
translated_tokens = model.generate(**inputs) | |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True) | |
return translation | |
def query_gemini_api(translated_text, gemini_api_key): | |
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent" | |
headers = {"Content-Type": "application/json"} | |
prompt = f"Based on the following sentence, continue the story: {translated_text}" | |
payload = { | |
"contents": [{"parts": [{"text": prompt}]}] | |
} | |
response = requests.post(f"{url}?key={gemini_api_key}", headers=headers, json=payload) | |
if response.status_code == 200: | |
result = response.json() | |
creative_text = result['candidates'][0]['content']['parts'][0]['text'] | |
return creative_text | |
else: | |
return f"Error: {response.status_code} - {response.text}" | |
def query_image(payload): | |
huggingface_api_key = os.getenv('HUGGINGFACE_API_KEY') | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
headers = {"Authorization": f"Bearer {huggingface_api_key}"} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.content | |
def process_input(tamil_input, language): | |
gemini_api_key = os.getenv('GEMINI_API_KEY') | |
translated_output = translate_text(tamil_input, language) | |
creative_output = query_gemini_api(translated_output, gemini_api_key) | |
image_bytes = query_image({"inputs": translated_output}) | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) | |
except UnidentifiedImageError: | |
image = None | |
return translated_output, creative_output, image | |
# Gradio interface setup | |
iface = gr.Interface( | |
fn=process_input, | |
inputs=[ | |
gr.Textbox(label="Input Text"), | |
gr.Dropdown(label="Select Language", choices=["Tamil", "French", "Hindi", "German"]) | |
], | |
outputs=[ | |
gr.Textbox(label="Translated Text"), | |
gr.Textbox(label="Creative Text"), | |
gr.Image(label="Generated Image") | |
], | |
title="TRANSART🎨 BY Sakthi", | |
description="Enter text to translate into English and generate an image based on the translated text." | |
) | |
iface.launch() | |