import numpy as np import pandas as pd import streamlit as st # from pandas_profiling import ProfileReport from ydata_profiling import ProfileReport from streamlit_pandas_profiling import st_profile_report st.markdown(''' # **The EDA App** Unleash the Power of Data Exploration with our EDA App: Dive Deep, Discover Insights, and Empower Your Analysis! ''') # Upload CSV data with st.sidebar.header('Upload your CSV data'): uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"]) if uploaded_file is not None: @st.cache_data def load_csv(): csv = pd.read_csv(uploaded_file) return csv df = load_csv() pr = ProfileReport(df, explorative=True) st.header('**Input DataFrame**') st.dataframe(df) st.header('**Pandas Profiling Report**') st_profile_report(pr) else: st.info('Please Upload CSV file to Begin.') if st.button('If you have nodataset Press me!>-<'): # Example data @st.cache_data def load_data(): a = pd.DataFrame( np.random.rand(100, 5), columns=['a', 'b', 'c', 'd', 'e'] ) return a df = load_data() pr = ProfileReport(df, explorative=True) st.header('**Input DataFrame**') st.write(df) st.write('---') st.header('**Pandas Profiling Report**') st_profile_report(pr)