import os os.system("pip install -q gradio torch transformers") import gradio as gr import torch import random from transformers import GPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') model = GPT2LMHeadModel.from_pretrained('RandomNameAnd6/DharGPT-Small') def generate_text(prompt): input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=48, temperature=0.85, do_sample=True) text = tokenizer.decode(output[0], skip_special_tokens=True) return text # Read real titles from file with open('dhar_mann_titles.txt', 'r') as file: dhar_mann_titles = file.readlines() # Function to generate an AI title (dummy implementation) def generate_ai_title(): inputs = tokenizer(["<|startoftext|>"]*1, return_tensors = "pt") outputs = model.generate(**inputs, max_new_tokens=50, use_cache=True, temperature=0.85, do_sample=True) return (tokenizer.batch_decode(outputs)[0])[15:-13] # Function to check user's answer and update score def check_answer(user_choice, real_index, score): if (user_choice == "Option 1" and real_index == 0) or (user_choice == "Option 2" and real_index == 1): score += 1 return f"Correct! Your current score is: {score}", score, gr.update(visible=True), gr.update(visible=False) else: score = 0 return f"Incorrect. Your score has been reset to: {score}", score, gr.update(visible=False), gr.update(visible=True) # Function to update options def update_options(): real_index = random.choice([0, 1]) real_title = random.choice(dhar_mann_titles).strip() ai_title = generate_ai_title() if real_index == 0: return real_title, ai_title, real_index else: return ai_title, real_title, real_index def create_interface(): with gr.Blocks() as demo: score = gr.State(0) real_index_state = gr.State(0) score_display = gr.Markdown("## Real or AI - Dhar Mann\n**Current Score: 0**") with gr.Row(): with gr.Column(): gr.Markdown("### Option 1") option1_box = gr.Markdown("") with gr.Column(): gr.Markdown("### Option 2") option2_box = gr.Markdown("") with gr.Row(): choice = gr.Radio(["Option 1", "Option 2"], label="Which one do you think is real?") submit_button = gr.Button("Submit") result_text = gr.Markdown("") continue_button = gr.Button("Continue", visible=False) restart_button = gr.Button("Restart", visible=False) def on_submit(user_choice, option1, option2, real_index, score): result, new_score, continue_visibility, restart_visibility = check_answer(user_choice, real_index, score) return result, new_score, continue_visibility, restart_visibility def on_continue(score): option1, option2, real_index = update_options() new_score_display = f"## Real or AI - Dhar Mann\n**Current Score: {score}**" return option1, option2, real_index, new_score_display, gr.update(value=None), "", gr.update(visible=False), gr.update(visible=False) def on_restart(): return on_continue(0) # Initialize options option1, option2, real_index = update_options() submit_button.click(on_submit, inputs=[choice, option1_box, option2_box, real_index_state, score], outputs=[result_text, score, continue_button, restart_button]) continue_button.click(on_continue, inputs=score, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button]) restart_button.click(on_restart, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button]) # Set initial content for option boxes option1_box.value = option1 option2_box.value = option2 real_index_state.value = real_index return demo demo = create_interface() demo.launch()