DharGPT-Demo / app.py
RandomNameAnd6's picture
Update app.py
71c1ec0 verified
raw
history blame
6.52 kB
import os
os.system("pip install -q gradio torch transformers")
import gradio as gr
import torch
import random
from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2LMHeadModel.from_pretrained('RandomNameAnd6/DharGPT-Small')
# Read real titles from file
with open('dhar_mann_titles.txt', 'r') as file:
dhar_mann_titles = file.readlines()
def levenshtein_distance(s1, s2):
"""
Compute the Levenshtein distance between two strings.
Parameters:
- s1 (str): The first string.
- s2 (str): The second string.
Returns:
- int: The Levenshtein distance between the two strings.
"""
if len(s1) < len(s2):
return levenshtein_distance(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def string_similarity_index(original_text, comparison_text, threshold=0.75):
"""
Calculate the similarity index between two strings based on Levenshtein distance
and compare it to a threshold.
Parameters:
- original_text (str): The original text.
- comparison_text (str): The text to compare for similarity.
- threshold (float): The non-original threshold score (0 to 1).
Returns:
- bool: True if the similarity score is above the threshold, False otherwise.
"""
# Calculate the Levenshtein distance
distance = levenshtein_distance(original_text, comparison_text)
# Calculate the maximum possible distance
max_distance = max(len(original_text), len(comparison_text))
# Calculate the similarity score
similarity_score = 1 - distance / max_distance
# Compare the similarity score to the threshold
return similarity_score >= threshold
def clean_title(input_string):
if input_string.endswith(" | Dhar Mann"):
input_string = input_string[:-12]
elif input_string.endswith(" | Dhar Mann Studios"):
input_string = input_string[:-20]
# Attempt to remove all text after the first comma
comma_index = input_string.find(',')
if comma_index != -1:
input_string = input_string[:comma_index]
return input_string
# Function to generate an AI title
def generate_ai_title():
while True:
inputs = tokenizer(["<|startoftext|>"]*1, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=48, use_cache=True, temperature=0.85, do_sample=True)
generated_title = (tokenizer.batch_decode(outputs)[0])[15:-13].strip()
# Check for similarity with existing titles
is_unique = True
for title in dhar_mann_titles:
title = title.strip() # Remove any extra whitespace characters like newlines
if string_similarity_index(clean_title(generated_title), clean_title(title)):
is_unique = False
print(f"Regenerating! Generated title was: \"{generated_title}\", and the real title was \"{title}\"")
break
if is_unique:
return generated_title
# Function to check user's answer and update score
def check_answer(user_choice, real_index, score):
if (user_choice == "Option 1" and real_index == 0) or (user_choice == "Option 2" and real_index == 1):
score += 1
return f"Correct! Your current score is: {score}", score, gr.update(visible=True), gr.update(visible=False)
else:
score = 0
return f"Incorrect. Your score has been reset to: {score}", score, gr.update(visible=False), gr.update(visible=True)
# Function to update options
def update_options():
real_index = random.choice([0, 1])
real_title = random.choice(dhar_mann_titles).strip()
ai_title = generate_ai_title()
if real_index == 0:
return real_title, ai_title, real_index
else:
return ai_title, real_title, real_index
def create_interface():
with gr.Blocks() as demo:
score = gr.State(0)
real_index_state = gr.State(0)
score_display = gr.Markdown("## Real or AI - Dhar Mann\n**Current Score: 0**")
with gr.Row():
with gr.Column():
gr.Markdown("### Option 1")
option1_box = gr.Markdown("")
with gr.Column():
gr.Markdown("### Option 2")
option2_box = gr.Markdown("")
with gr.Row():
choice = gr.Radio(["Option 1", "Option 2"], label="Which one do you think is real?")
submit_button = gr.Button("Submit")
result_text = gr.Markdown("")
continue_button = gr.Button("Continue", visible=False)
restart_button = gr.Button("Restart", visible=False)
def on_submit(user_choice, option1, option2, real_index, score):
result, new_score, continue_visibility, restart_visibility = check_answer(user_choice, real_index, score)
return result, new_score, continue_visibility, restart_visibility
def on_continue(score):
option1, option2, real_index = update_options()
new_score_display = f"## Real or AI - Dhar Mann\n**Current Score: {score}**"
return option1, option2, real_index, new_score_display, gr.update(value=None), "", gr.update(visible=False), gr.update(visible=False)
def on_restart():
return on_continue(0)
# Initialize options
option1, option2, real_index = update_options()
submit_button.click(on_submit, inputs=[choice, option1_box, option2_box, real_index_state, score], outputs=[result_text, score, continue_button, restart_button])
continue_button.click(on_continue, inputs=score, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button])
restart_button.click(on_restart, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button])
# Set initial content for option boxes
option1_box.value = option1
option2_box.value = option2
real_index_state.value = real_index
return demo
demo = create_interface()
demo.launch()