Spaces:
Sleeping
Sleeping
import os | |
os.system("pip install -q gradio torch transformers") | |
import gradio as gr | |
import torch | |
import random | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') | |
model = GPT2LMHeadModel.from_pretrained('RandomNameAnd6/DharGPT-Small') | |
# Read real titles from file | |
with open('dhar_mann_titles.txt', 'r') as file: | |
dhar_mann_titles = file.readlines() | |
def levenshtein_distance(s1, s2): | |
""" | |
Compute the Levenshtein distance between two strings. | |
Parameters: | |
- s1 (str): The first string. | |
- s2 (str): The second string. | |
Returns: | |
- int: The Levenshtein distance between the two strings. | |
""" | |
if len(s1) < len(s2): | |
return levenshtein_distance(s2, s1) | |
if len(s2) == 0: | |
return len(s1) | |
previous_row = range(len(s2) + 1) | |
for i, c1 in enumerate(s1): | |
current_row = [i + 1] | |
for j, c2 in enumerate(s2): | |
insertions = previous_row[j + 1] + 1 | |
deletions = current_row[j] + 1 | |
substitutions = previous_row[j] + (c1 != c2) | |
current_row.append(min(insertions, deletions, substitutions)) | |
previous_row = current_row | |
return previous_row[-1] | |
def string_similarity_index(original_text, comparison_text, threshold=0.65): | |
""" | |
Calculate the similarity index between two strings based on Levenshtein distance | |
and compare it to a threshold. | |
Parameters: | |
- original_text (str): The original text. | |
- comparison_text (str): The text to compare for similarity. | |
- threshold (float): The non-original threshold score (0 to 1). | |
Returns: | |
- bool: True if the similarity score is above the threshold, False otherwise. | |
""" | |
# Calculate the Levenshtein distance | |
distance = levenshtein_distance(original_text, comparison_text) | |
# Calculate the maximum possible distance | |
max_distance = max(len(original_text), len(comparison_text)) | |
# Calculate the similarity score | |
similarity_score = 1 - distance / max_distance | |
# Compare the similarity score to the threshold | |
return similarity_score >= threshold | |
# Function to generate an AI title | |
def generate_ai_title(): | |
while True: | |
inputs = tokenizer(["<|startoftext|>"]*1, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=48, use_cache=True, temperature=0.85, do_sample=True) | |
generated_title = (tokenizer.batch_decode(outputs)[0])[15:-13].strip() | |
# Check for similarity with existing titles | |
is_unique = True | |
for title in dhar_mann_titles: | |
title = title.strip() # Remove any extra whitespace characters like newlines | |
if string_similarity_index(generated_title, title): | |
is_unique = False | |
print(f"Regenerating! Generated title was: \"{generated_title}\", and the real title was \"{title}\"") | |
break | |
if is_unique: | |
return generated_title | |
# Function to check user's answer and update score | |
def check_answer(user_choice, real_index, score): | |
if (user_choice == "Option 1" and real_index == 0) or (user_choice == "Option 2" and real_index == 1): | |
score += 1 | |
return f"Correct! Your current score is: {score}", score, gr.update(visible=True), gr.update(visible=False) | |
else: | |
score = 0 | |
return f"Incorrect. Your score has been reset to: {score}", score, gr.update(visible=False), gr.update(visible=True) | |
# Function to update options | |
def update_options(): | |
real_index = random.choice([0, 1]) | |
real_title = random.choice(dhar_mann_titles).strip() | |
ai_title = generate_ai_title() | |
if real_index == 0: | |
return real_title, ai_title, real_index | |
else: | |
return ai_title, real_title, real_index | |
def create_interface(): | |
with gr.Blocks() as demo: | |
score = gr.State(0) | |
real_index_state = gr.State(0) | |
score_display = gr.Markdown("## Real or AI - Dhar Mann\n**Current Score: 0**") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Option 1") | |
option1_box = gr.Markdown("") | |
with gr.Column(): | |
gr.Markdown("### Option 2") | |
option2_box = gr.Markdown("") | |
with gr.Row(): | |
choice = gr.Radio(["Option 1", "Option 2"], label="Which one do you think is real?") | |
submit_button = gr.Button("Submit") | |
result_text = gr.Markdown("") | |
continue_button = gr.Button("Continue", visible=False) | |
restart_button = gr.Button("Restart", visible=False) | |
def on_submit(user_choice, option1, option2, real_index, score): | |
result, new_score, continue_visibility, restart_visibility = check_answer(user_choice, real_index, score) | |
return result, new_score, continue_visibility, restart_visibility | |
def on_continue(score): | |
option1, option2, real_index = update_options() | |
new_score_display = f"## Real or AI - Dhar Mann\n**Current Score: {score}**" | |
return option1, option2, real_index, new_score_display, gr.update(value=None), "", gr.update(visible=False), gr.update(visible=False) | |
def on_restart(): | |
return on_continue(0) | |
# Initialize options | |
option1, option2, real_index = update_options() | |
submit_button.click(on_submit, inputs=[choice, option1_box, option2_box, real_index_state, score], outputs=[result_text, score, continue_button, restart_button]) | |
continue_button.click(on_continue, inputs=score, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button]) | |
restart_button.click(on_restart, outputs=[option1_box, option2_box, real_index_state, score_display, choice, result_text, continue_button, restart_button]) | |
# Set initial content for option boxes | |
option1_box.value = option1 | |
option2_box.value = option2 | |
real_index_state.value = real_index | |
return demo | |
demo = create_interface() | |
demo.launch() |