Spaces:
Sleeping
Sleeping
File size: 5,972 Bytes
3928a9f 3fb614b b0d15d2 8eefb9c d6d59d4 8eefb9c 42435e1 3fb614b c9152b5 d6d59d4 8eefb9c c9152b5 d2758fe c9152b5 8eefb9c 3fb614b 8eefb9c d75f5ef ed9ce62 6e8442c 3fb614b d75f5ef 3fb614b d75f5ef 7bd3786 3fb614b 8343a97 952a2cb 3fb614b ed9ce62 8343a97 1424ecd 3fb614b 43cbeb6 3fb614b 8343a97 3fb614b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from instruct_pipeline import InstructionTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
import torch
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b", padding_side="left")
quantization_config = BitsAndBytesConfig(load_in_8bit=True,
llm_int8_threshold=200.0)
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b", device_map="auto", quantization_config=quantization_config)
generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer)
#generate_text = pipeline(model="databricks/dolly-v2-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
def generate(instruction):
response = generate_text(instruction)
result = ""
for word in response.split(" "):
result += word + " "
yield result
examples = [
"Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas",
"How do I make a campfire?",
"Write me a tweet about the release of Dolly 2.0, a new LLM",
"Explain to me the difference between nuclear fission and fusion.",
"I'm selling my Nikon D-750, write a short blurb for my ad."
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}"
# Based on the gradio theming guide and borrowed from https://huggingface.co./spaces/shivi/dolly-v2-demo
class SeafoamCustom(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.blue,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
font=font,
font_mono=font_mono,
)
super().set(
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
input_background_fill="zinc",
input_border_color="*secondary_300",
input_shadow="*shadow_drop",
input_shadow_focus="*shadow_drop_lg",
)
seafoam = SeafoamCustom()
with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
""" ## Dolly 2.0
Dolly 2.0 is a 12B parameter language model based on the EleutherAI pythia model family and fine-tuned exclusively on a new, high-quality human generated instruction following dataset, crowdsourced among Databricks employees. For more details, please refer to the [model card](https://huggingface.co./databricks/dolly-v2-12b)
Type in the box below and click the button to generate answers to your most pressing questions!
"""
)
gr.HTML("<p>You can duplicate this Space to run it privately without a queue for shorter queue times : <a style='display:inline-block' href='https://huggingface.co./spaces/RamAnanth1/Dolly-v2?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>")
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown(elem_id="q-output")
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
submit.click(generate, inputs=[instruction], outputs=[output])
instruction.submit(generate, inputs=[instruction], outputs=[output])
demo.queue(concurrency_count=16).launch(debug=True) |