Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,61 @@
|
|
1 |
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
import numpy as np
|
4 |
-
import os
|
5 |
-
import zipfile
|
6 |
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
def
|
9 |
-
"""
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
noise = np.random.normal(0, noise_scale, image_array.shape)
|
21 |
-
noised_image_array = np.clip(image_array + noise, 0, 255).astype(np.uint8)
|
22 |
-
return Image.fromarray(noised_image_array)
|
23 |
-
|
24 |
-
def augment_image(image, augmentations_count):
|
25 |
-
"""Generates augmented versions of a single image."""
|
26 |
-
augmented_images = []
|
27 |
-
for _ in range(augmentations_count):
|
28 |
-
augmented_image = apply_basic_augmentations(image)
|
29 |
-
augmented_image = simulate_latent_space_noising(augmented_image)
|
30 |
-
augmented_images.append(augmented_image)
|
31 |
-
return augmented_images
|
32 |
|
33 |
def create_downloadable_zip(augmented_images):
|
34 |
"""Creates a ZIP file in memory for downloading."""
|
35 |
zip_buffer = io.BytesIO()
|
36 |
with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file:
|
37 |
-
for idx,
|
38 |
-
img_byte_arr = io.BytesIO()
|
39 |
-
|
40 |
-
zip_file.writestr(f"augmented_image_{idx+1}.jpg", img_byte_arr.getvalue())
|
41 |
zip_buffer.seek(0)
|
42 |
return zip_buffer
|
43 |
|
44 |
-
st.title("Batch Image Augmentation
|
45 |
|
46 |
uploaded_files = st.file_uploader("Choose images (1-10)", accept_multiple_files=True, type=["jpg", "jpeg", "png"])
|
47 |
augmentations_count = st.number_input("Number of augmented samples per image", min_value=1, max_value=10, value=3)
|
48 |
|
49 |
-
if uploaded_files:
|
50 |
all_augmented_images = []
|
51 |
for uploaded_file in uploaded_files:
|
52 |
image = Image.open(uploaded_file).convert("RGB")
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
zip_buffer = create_downloadable_zip(all_augmented_images)
|
58 |
st.download_button(
|
59 |
-
label="Download
|
60 |
data=zip_buffer,
|
61 |
file_name="augmented_images.zip",
|
62 |
mime="application/zip"
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
import numpy as np
|
|
|
|
|
4 |
import io
|
5 |
+
import zipfile
|
6 |
+
|
7 |
+
def mock_encoder(image):
|
8 |
+
"""Simulates encoding an image into a latent representation."""
|
9 |
+
# This is a placeholder. In practice, this would be your trained encoder's output.
|
10 |
+
return np.random.normal(0, 1, (1, 100)), np.random.normal(0, 1, (1, 100)), np.random.normal(0, 1, (1, 100))
|
11 |
|
12 |
+
def mock_decoder(latent_representation):
|
13 |
+
"""Simulates decoding a latent representation back into an image."""
|
14 |
+
# Returns a random image for demonstration
|
15 |
+
return np.random.rand(28, 28, 1) * 255
|
16 |
+
|
17 |
+
def latent_space_augmentation(image, encoder, decoder, noise_scale=0.1):
|
18 |
+
"""Performs latent space augmentation by adding noise to the latent representation."""
|
19 |
+
z_mean, z_log_var, _ = encoder(image)
|
20 |
+
epsilon = np.random.normal(size=z_mean.shape)
|
21 |
+
z_augmented = z_mean + np.exp(0.5 * z_log_var) * epsilon * noise_scale
|
22 |
+
augmented_image = decoder(z_augmented)
|
23 |
+
return np.squeeze(augmented_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def create_downloadable_zip(augmented_images):
|
26 |
"""Creates a ZIP file in memory for downloading."""
|
27 |
zip_buffer = io.BytesIO()
|
28 |
with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file:
|
29 |
+
for idx, image_data in enumerate(augmented_images):
|
30 |
+
img_byte_arr = io.BytesIO(image_data)
|
31 |
+
zip_file.writestr(f"augmented_image_{idx+1}.jpeg", img_byte_arr.getvalue())
|
|
|
32 |
zip_buffer.seek(0)
|
33 |
return zip_buffer
|
34 |
|
35 |
+
st.title("Batch Image Augmentation with Latent Space Manipulation")
|
36 |
|
37 |
uploaded_files = st.file_uploader("Choose images (1-10)", accept_multiple_files=True, type=["jpg", "jpeg", "png"])
|
38 |
augmentations_count = st.number_input("Number of augmented samples per image", min_value=1, max_value=10, value=3)
|
39 |
|
40 |
+
if uploaded_files and st.button("Generate Augmented Images"):
|
41 |
all_augmented_images = []
|
42 |
for uploaded_file in uploaded_files:
|
43 |
image = Image.open(uploaded_file).convert("RGB")
|
44 |
+
image = image.resize((28, 28)) # Resize for simplicity with the mock decoder
|
45 |
+
|
46 |
+
# Convert to numpy for processing
|
47 |
+
image_np = np.array(image) / 255.0 # Normalize
|
48 |
+
for _ in range(augmentations_count):
|
49 |
+
augmented_image_np = latent_space_augmentation(image_np, mock_encoder, mock_decoder)
|
50 |
+
augmented_image = (augmented_image_np * 255).astype(np.uint8) # Denormalize
|
51 |
+
augmented_images_io = io.BytesIO()
|
52 |
+
Image.fromarray(augmented_image).save(augmented_images_io, format="JPEG")
|
53 |
+
all_augmented_images.append(augmented_images_io.getvalue())
|
54 |
+
|
55 |
+
if all_augmented_images:
|
56 |
zip_buffer = create_downloadable_zip(all_augmented_images)
|
57 |
st.download_button(
|
58 |
+
label="Download Augmented Dataset",
|
59 |
data=zip_buffer,
|
60 |
file_name="augmented_images.zip",
|
61 |
mime="application/zip"
|