Rahatara's picture
Update app.py
25080b2 verified
import cv2
import gradio as gr
import google.generativeai as genai
import os
import PIL.Image
# Configure the API key for Google Generative AI
genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
# Define the Generative AI model
model = genai.GenerativeModel('gemini-1.5-flash')
# Function to capture frames from a video
def frame_capture(video_path, num_frames=5):
vidObj = cv2.VideoCapture(video_path)
frames = []
total_frames = int(vidObj.get(cv2.CAP_PROP_FRAME_COUNT))
frame_step = max(1, total_frames // num_frames)
count = 0
while len(frames) < num_frames:
vidObj.set(cv2.CAP_PROP_POS_FRAMES, count)
success, image = vidObj.read()
if not success:
break
frames.append(image)
count += frame_step
vidObj.release()
return frames
# Function to generate text descriptions for frames
def generate_descriptions_for_frames(video_path):
frames = frame_capture(video_path)
images = [PIL.Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in frames]
prompt = "Describe what is happening in each of these frames. Identify any potential railway defect or risk."
images_with_prompt = [prompt] + images
responses = model.generate_content(images_with_prompt)
descriptions = [response.text for response in responses]
formatted_description = format_descriptions(descriptions)
return formatted_description
# Function to handle chat interaction
def chat_interaction(video_path, chatbot, user_message):
frames = frame_capture(video_path)
images = [PIL.Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in frames]
prompt = f"Based on these video frames, {user_message}"
images_with_prompt = [prompt] + images
responses = model.generate_content(images_with_prompt)
# Collect the text responses properly
response_text = "".join([response.text for response in responses])
chatbot.append((user_message, response_text))
return "", chatbot
# Helper function to format descriptions
def format_descriptions(descriptions):
return ' '.join(descriptions).strip()
# Define the Gradio interfaces for each tab
# Tab 1: Video Analysis System with Set Prompt
with gr.Blocks() as tab1:
with gr.Column():
gr.Markdown("### Video Analysis System")
video_input_1 = gr.Video(label="Upload Video", autoplay=True)
output_text = gr.Textbox(label="What's this video")
analyze_button = gr.Button("Analyze Video")
analyze_button.click(fn=generate_descriptions_for_frames, inputs=video_input_1, outputs=output_text)
# Tab 2: Interactive Chat Mode
with gr.Blocks() as tab2:
with gr.Column():
gr.Markdown("### Interactive Chat Mode")
video_input_2 = gr.Video(label="Upload Video", autoplay=True)
chatbot = gr.Chatbot(label="Video Analysis Chatbot")
user_input = gr.Textbox(label="Ask something specific about the video", placeholder="E.g., Are there any cars in this video?")
user_input.submit(fn=chat_interaction, inputs=[video_input_2, chatbot, user_input], outputs=[user_input, chatbot])
# Combine the two tabs into a single interface
with gr.Blocks() as demo:
gr.TabbedInterface([tab1, tab2], ["Video Analysis", "Interactive Chat"])
demo.launch()