from typing import Any, List, Tuple import gradio as gr from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_openai import ChatOpenAI from langchain_community.document_loaders import PyMuPDFLoader import fitz from PIL import Image import os import openai # MyApp class to handle the processes class MyApp: def __init__(self) -> None: self.OPENAI_API_KEY: str = None # Initialize with None self.chain = None self.chat_history: list = [] self.documents = None self.file_name = None def set_api_key(self, api_key: str): self.OPENAI_API_KEY = api_key openai.api_key = api_key def process_file(self, file) -> Image.Image: loader = PyMuPDFLoader(file.name) self.documents = loader.load() self.file_name = os.path.basename(file.name) doc = fitz.open(file.name) page = doc[0] pix = page.get_pixmap(dpi=150) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) return image def build_chain(self, file) -> str: embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY) pdfsearch = Chroma.from_documents( self.documents, embeddings, collection_name=self.file_name, ) self.chain = ConversationalRetrievalChain.from_llm( ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY), retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}), return_source_documents=True, ) return "Vector database built successfully!" # Function to add text to chat history def add_text(history: List[Tuple[str, str]], text: str) -> List[Tuple[str, str]]: if not text: raise gr.Error("Enter text") history.append((text, "")) return history # Function to get response from the model def get_response(history, query): if app.chain is None: raise gr.Error("The chain has not been built yet. Please ensure the vector database is built before querying.") try: result = app.chain.invoke( {"question": query, "chat_history": app.chat_history} ) app.chat_history.append((query, result["answer"])) source_docs = result["source_documents"] source_texts = [] for doc in source_docs: source_texts.append(f"Page {doc.metadata['page'] + 1}: {doc.page_content}") source_texts_str = "\n\n".join(source_texts) history[-1] = (history[-1][0], result["answer"]) return history, source_texts_str except Exception as e: app.chat_history.append((query, "I have no information about it. Feed me knowledge, please!")) return history, f"I have no information about it. Feed me knowledge, please! Error: {str(e)}" # Function to refresh chat def refresh_chat(): app.chat_history = [] return [] app = MyApp() # Function to set API key def set_api_key(api_key): app.set_api_key(api_key) # Pre-process the saved PDF file after setting the API key saved_file_path = "THEDIA1.pdf" with open(saved_file_path, 'rb') as saved_file: app.process_file(saved_file) app.build_chain(saved_file) return f"API Key set to {api_key[:4]}...{api_key[-4:]} and vector database built successfully!" # List of determined questions questions = [ "What is the primary goal of Dialectical Behaviour Therapy?", "How can mindfulness help in managing emotions?", "What are some techniques to handle distressing situations?", "Can you explain the concept of radical acceptance?", "How does DBT differ from other types of therapy?", "What are the four modules of DBT?", "How can DBT skills be applied in daily life?", "What is the importance of emotional regulation in DBT?", "How does DBT address interpersonal effectiveness?", "What are some common myths about DBT?", "How can one practice distress tolerance skills?", "What role does validation play in DBT?", "How does DBT incorporate cognitive-behavioral techniques?", "What are the stages of DBT treatment?", "How can one use DBT skills to improve self-awareness?" ] # Gradio interface with gr.Blocks() as demo: gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**") gr.Markdown( "Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. " "We are not medical practitioners, and the use of this chatbot is at your own responsibility." ) api_key_input = gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API Key") api_key_btn = gr.Button("Set API Key") api_key_status = gr.Textbox(value="API Key status", interactive=False) api_key_btn.click( fn=set_api_key, inputs=[api_key_input], outputs=[api_key_status] ) chatbot_current = gr.Chatbot(elem_id="chatbot_current") txt_current = gr.Textbox( show_label=False, placeholder="Enter text and press submit", scale=2 ) submit_btn_current = gr.Button("Submit", scale=1) refresh_btn_current = gr.Button("Refresh Chat", scale=1) source_texts_output_current = gr.Textbox(label="Source Texts", interactive=False) submit_btn_current.click( fn=add_text, inputs=[chatbot_current, txt_current], outputs=[chatbot_current], queue=False, ).success( fn=get_response, inputs=[chatbot_current, txt_current], outputs=[chatbot_current, source_texts_output_current] ) refresh_btn_current.click( fn=refresh_chat, inputs=[], outputs=[chatbot_current], ) question_dropdown = gr.Dropdown( label="Select an example question", choices=questions ) question_submit_btn = gr.Button("Submit Question") question_submit_btn.click( fn=add_text, inputs=[chatbot_current, question_dropdown], outputs=[chatbot_current], queue=False, ).success( fn=get_response, inputs=[chatbot_current, question_dropdown], outputs=[chatbot_current, source_texts_output_current] ) demo.queue() demo.launch()